Q: How do you find acceleration when given only mass and velocity?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

You cannot. Force = Mass*Acceleration or Mass*Rate of change of Velocity.

Power is equal to Force times velocity; P=Fv. You are given the 'speed', which I assume to be velocity. You also have acceleration. In order to find F, you need first to find the mass, which you can calculate from the weight, Fg, by dividing by the acceleration due to gravity, 9.8. You then have the mass. From here, multiply mass times acceleration times the velocity.

the final velocity assuming that the mass is falling and that air resistance can be ignored but it is acceleration not mass that is important (can be gravity) final velocity is = ( (starting velocity)2 x 2 x acceleration x height )0.5

If you have the mass, you can find the acceleration from Newton's Second Law, a=F/m where a is the acceleration, m is the mass, and F is the force. Then the velocity is given by the standard formula v=vo+at where v is the final velocity, vo the velocity at t=0, probably 0 in your case. If so v=at.

Force equals mass times acceleration.

Related questions

You cannot. Force = Mass*Acceleration or Mass*Rate of change of Velocity.

Power is equal to Force times velocity; P=Fv. You are given the 'speed', which I assume to be velocity. You also have acceleration. In order to find F, you need first to find the mass, which you can calculate from the weight, Fg, by dividing by the acceleration due to gravity, 9.8. You then have the mass. From here, multiply mass times acceleration times the velocity.

You can find force using Newton's second law, which states that force is equal to mass times acceleration. Since acceleration is the rate of change of velocity over time, you can calculate acceleration from the given velocity and time. Then, multiply the mass by the acceleration to find the force.

the final velocity assuming that the mass is falling and that air resistance can be ignored but it is acceleration not mass that is important (can be gravity) final velocity is = ( (starting velocity)2 x 2 x acceleration x height )0.5

If you have the mass, you can find the acceleration from Newton's Second Law, a=F/m where a is the acceleration, m is the mass, and F is the force. Then the velocity is given by the standard formula v=vo+at where v is the final velocity, vo the velocity at t=0, probably 0 in your case. If so v=at.

Force equals mass times acceleration.

There is not enough information. Force = Mass*Acceleration. Acceleration is the rate of change in velocity. This requires information on change in velocity as well as the time over which the change took place. There is no information at all on the latter.

momentum = mass x velocity => mass = momentum / velocity

To get the potential energy when only the mass and velocity time has been given, simply multiply mass and the velocity time given.

You can find acceleration by using the formula: acceleration = (change in velocity) / (time taken) or a = (v2 - v1) / t. Once you have the acceleration, you can find the force using Newton's second law: force = mass x acceleration or F = m*a.

Increasing the mass of the marble would decrease its velocity for a given force, due to the increased inertia the marble would have. This results in a decrease in acceleration as well, since acceleration is inversely proportional to mass (F=ma).

You can't. The mass is irrelevant to velocity. You need the distance.