answersLogoWhite

0


Best Answer

d/dx(in x)

= 1/x

The proof is very confusing, so I just commit this to memory.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you find derivative of ln x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the derivative of lnlnx?

1/xlnx Use the chain rule: ln(ln(x)) The derivative of the outside is1/ln(x) times the derivative of the inside. 1/[x*ln(x)]


What is the third derivative of lnx?

Oh, dude, the third derivative of ln(x) is -2/(x^3). But like, who really needs to know that, right? I mean, unless you're planning on impressing your calculus teacher or something. Just remember, math is like a puzzle, except no one actually wants to put it together.


What is the derivative of e to the power ln x squared?

e^[ln(x^2)]=x^2, so your question is really, "What is the derivative of x^2," to which the answer is 2x.


What is the derivative of sinx pwr cosx?

For the function: y = sin(x)cos(x) To find the derivative y', implicit differentiation must be used. To do this, both sides of the equation must be put into the argument of a natural logarithm: ln(y) = ln(sin(x)cos(x)) by the properties of logarithms, this can also be expressed as: ln(y) = cos(x)ln(sin(x)) deriving both sides of the equation yields: (1/y)(y') = cos(x)(1/sin(x))(cos(x)) + -sin(x)ln(sin(x)) This derivative features two important things. The obvious thing is the product rule use to differentiate the right side of the equation. The left side of the equation brings into play the "implicit" differentiation part of this problem. The derivative of ln(y) is a chain rule. The derivative of just ln(y) is simply 1/y, but you must also multiply by the derivative of y, which is y'. so the total derivative of ln(y) is (1/y)(y'). solving for y' in the above, the following is found: y' = y[(cos2(x)/sin(x)) - sin(x)ln(sin(x))] = y[cot(x)cos(x) - sin(x)ln(sin(x))] y' = y[cot(x)cos(x) - sin(x)ln(sin(x))] = sin(x)cos(x)[cot(x)cos(x) - sin(x)ln(sin(x)) is the most succinct form of this derivative.


What is the anti derivative of 1 over x?

The anti-derivative of 1/x is ln|x| + C, where ln refers to logarithm of x to the base e and |x| refers to the absolute value of x, and C is a constant.

Related questions

What is the derivative of lnlnx?

1/xlnx Use the chain rule: ln(ln(x)) The derivative of the outside is1/ln(x) times the derivative of the inside. 1/[x*ln(x)]


What is the third derivative of lnx?

Oh, dude, the third derivative of ln(x) is -2/(x^3). But like, who really needs to know that, right? I mean, unless you're planning on impressing your calculus teacher or something. Just remember, math is like a puzzle, except no one actually wants to put it together.


How do you differentiate exponential function?

The derivative of e^u(x) with respect to x: [du/dx]*[e^u(x)]For a general exponential: b^x, can be rewritten as b^x = e^(x*ln(b))So derivative of b^x = derivative of e^u(x), where u(x) = x*ln(b).Derivative of x*ln(b) = ln(b). {remember b is just a constant, so ln(b) is a constant}So derivative of b^x = ln(b)*e^(x*ln(b))= ln(b) * b^x(from above)


How do you do exponential functions?

The derivative of e^u(x) with respect to x: [du/dx]*[e^u(x)]For a general exponential: b^x, can be rewritten as b^x = e^(x*ln(b))So derivative of b^x = derivative of e^u(x), where u(x) = x*ln(b).Derivative of x*ln(b) = ln(b). {remember b is just a constant, so ln(b) is a constant}So derivative of b^x = ln(b)*e^(x*ln(b))= ln(b) * b^x(from above)


What is the Derivative of 500 ln x plus 1?

the derivative of ln x = x'/x; the derivative of 1 is 0 so the answer is 500(1/x)+0 = 500/x


What is the derivative of Ln10?

The derivative of ln(10) is 1/10. This is because the derivative of the natural logarithm function ln(x) is 1/x. Therefore, when differentiating ln(10), the derivative is 1/10.


What is the derivative of e the the power ln x?

y = e^ln x using the fact that e to the ln x is just x, and the derivative of x is 1: y = x y' = 1


What is the derivative of ln x to the power of 2?

If the function is (ln x)2, then the chain rules gives us the derivative 2ln(x)/x, with the x in the denominator. If the function is ln (x2), then the chain rule gives us the derivative 2/x.


What is the derivative of 2lnx?

The derivative of ln x is 1/x The derivative of 2ln x is 2(1/x) = 2/x


What is the derivative of e to the power ln x squared?

e^[ln(x^2)]=x^2, so your question is really, "What is the derivative of x^2," to which the answer is 2x.


What is the derivative of 2 to the power of x?

if f(x)=kx, f'(x)=ln(k)*kx. Therefore, the derivative of 2x is ln(2)*2x.


What is the derivative of sinx pwr cosx?

For the function: y = sin(x)cos(x) To find the derivative y', implicit differentiation must be used. To do this, both sides of the equation must be put into the argument of a natural logarithm: ln(y) = ln(sin(x)cos(x)) by the properties of logarithms, this can also be expressed as: ln(y) = cos(x)ln(sin(x)) deriving both sides of the equation yields: (1/y)(y') = cos(x)(1/sin(x))(cos(x)) + -sin(x)ln(sin(x)) This derivative features two important things. The obvious thing is the product rule use to differentiate the right side of the equation. The left side of the equation brings into play the "implicit" differentiation part of this problem. The derivative of ln(y) is a chain rule. The derivative of just ln(y) is simply 1/y, but you must also multiply by the derivative of y, which is y'. so the total derivative of ln(y) is (1/y)(y'). solving for y' in the above, the following is found: y' = y[(cos2(x)/sin(x)) - sin(x)ln(sin(x))] = y[cot(x)cos(x) - sin(x)ln(sin(x))] y' = y[cot(x)cos(x) - sin(x)ln(sin(x))] = sin(x)cos(x)[cot(x)cos(x) - sin(x)ln(sin(x)) is the most succinct form of this derivative.