If the function is (ln x)2, then the chain rules gives us the derivative 2ln(x)/x, with the x in the denominator. If the function is ln (x2), then the chain rule gives us the derivative 2/x.
I get x*x^x-1 + lnx*x^x = x^x + x^xlnx = x^x * (1+lnx) Here, ^ is power; * = times; ln = natural logratithm ( base e)
e^(-2x) * -2 The derivative of e^F(x) is e^F(x) times the derivative of F(x)
The derivative of ln(10) is 1/10. This is because the derivative of the natural logarithm function ln(x) is 1/x. Therefore, when differentiating ln(10), the derivative is 1/10.
The derivative of ln x is 1/x The derivative of 2ln x is 2(1/x) = 2/x
e^[ln(x^2)]=x^2, so your question is really, "What is the derivative of x^2," to which the answer is 2x.
e^[ln(x^2)]=x^2, so your question is really, "What is the derivative of x^2," to which the answer is 2x.
The derivative of e^u(x) with respect to x: [du/dx]*[e^u(x)]For a general exponential: b^x, can be rewritten as b^x = e^(x*ln(b))So derivative of b^x = derivative of e^u(x), where u(x) = x*ln(b).Derivative of x*ln(b) = ln(b). {remember b is just a constant, so ln(b) is a constant}So derivative of b^x = ln(b)*e^(x*ln(b))= ln(b) * b^x(from above)
The derivative of e^u(x) with respect to x: [du/dx]*[e^u(x)]For a general exponential: b^x, can be rewritten as b^x = e^(x*ln(b))So derivative of b^x = derivative of e^u(x), where u(x) = x*ln(b).Derivative of x*ln(b) = ln(b). {remember b is just a constant, so ln(b) is a constant}So derivative of b^x = ln(b)*e^(x*ln(b))= ln(b) * b^x(from above)
If the function is (ln x)2, then the chain rules gives us the derivative 2ln(x)/x, with the x in the denominator. If the function is ln (x2), then the chain rule gives us the derivative 2/x.
y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx
if f(x)=kx, f'(x)=ln(k)*kx. Therefore, the derivative of 2x is ln(2)*2x.
Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.
The first derivative of e to the x power is e to the power of x.
1/xlnx Use the chain rule: ln(ln(x)) The derivative of the outside is1/ln(x) times the derivative of the inside. 1/[x*ln(x)]
The anti-derivative of 1/x is ln|x| + C, where ln refers to logarithm of x to the base e and |x| refers to the absolute value of x, and C is a constant.
e^(3lnx)=e^[ln(x^3)]=x^3