answersLogoWhite

0

Call your matrix A, the eigenvalues are defined as the numbers e for which a nonzero vector v exists such that Av = ev. This is equivalent to requiring (A-eI)v=0 to have a non zero solution v, where I is the identity matrix of the same dimensions as A. A matrix A-eI with this property is called singular and has a zero determinant. The determinant of A-eI is a polynomial in e, which has the eigenvalues of A as roots. Often setting this polynomial to zero and solving for e is the easiest way to compute the eigenvalues of A.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ReneRene
Change my mind. I dare you.
Chat with Rene

Add your answer:

Earn +20 pts
Q: How do you find eigenvalues of a 3 by 3 matrix?
Write your answer...
Submit
Still have questions?
magnify glass
imp