Chat with our AI personalities
No. The IQR is found by finding the lower quartile, then the upper quartile. You then minus the lower quartile value from the upper quartile value (hence "interquartile"). This gives you the IQR.
the IQR is the third quartile minus the first quartile.
You arrange the data set in ascending order. You then find the observation such that a quarter of the observations are smaller than it and three quarters are bigger. That value is the lower quartile. Next find the observation such that three quarters of the observations are smaller than it and a quarter are bigger. That value is the upper quartile. Upper quartile minus lower quartile = IQR.
The exact definition of which points are considered to be outliers is up to the experimenters. A simple way to define an outlier is by using the lower (LQ) and upper (UQ) quartiles and the interquartile range (IQR); for example: Define two boundaries b1 and b2 at each end of the data: b1 = LQ - 1.5 × IQR and UQ + 1.5 × IQR b2 = LQ - 3 × IQR and UQ + 3 × IQR If a data point occurs between b1 and b2 it can be defined as a mild outlier If a data point occurs beyond b2 it can be defined as an extreme outlier. The multipliers of the IQR for the boundaries, and the number of boundaries, can be adjusted depending upon what definitions are required/make sense.
An outlier, in a set of data, is an observation whose value is distant from other observations. There is no exact definition but one commonly used definition is any value that lies outside of Median ± 3*IQR IQR = Inter-Quartile Range.