The answer depends on the information that you have. If the arc subtends an angle of x radians in a circle with radius r cm, then the arc length is r*x cm.
Since the minor arc is 30 degrees, the major arc is 330 degrees (360 - 30). So we have: 330 degrees : arc length 10 30 degrees : arc length x 330/30 = 10/x 11/1 = 10/x x = 10/11 x = 0.9 approximately So the length of the minor arc is approximately 0.9 units.
To find the arc length of a minor arc, you can use the formula: ( L = \frac{\theta}{360} \times 2\pi r ), where ( L ) is the arc length, ( \theta ) is the central angle in degrees, and ( r ) is the radius. For a minor arc with a central angle of 120 degrees and a radius of 8, substitute the values into the formula: ( L = \frac{120}{360} \times 2\pi \times 8 ). This simplifies to ( L = \frac{1}{3} \times 16\pi ), resulting in an arc length of approximately ( 16.76 ) units.
A+ 13.03^.^
It's 0.524 of the length of the radius.
If the radius of the circle is r units and the angle subtended by the arc at the centre is x radians, then the length of the arc is r*x units. If you are still working with angles measured in degrees, then the answer is r*pi*y/180 where the angle is y degrees. If r and x (or y) are not available, or cannot be deduced, then you cannot find the length of the arc.
find the arc length of minor arc 95 c= 18.84
5.23
13.08
19.28
It is: 72-lenghth of major arc = length of minor arc
Since the minor arc is 30 degrees, the major arc is 330 degrees (360 - 30). So we have: 330 degrees : arc length 10 30 degrees : arc length x 330/30 = 10/x 11/1 = 10/x x = 10/11 x = 0.9 approximately So the length of the minor arc is approximately 0.9 units.
I'm assuming that "c" is short for "circumference". The length of an arc is (circumference)*(360/angle). So the length of an arc in a circle with circumference length of 18.84 is 6782.4/angle, where the angle is measured in degrees.
Minor arc/Circumference = 150/360 Minor arc = 31.4*150/360 = 13.0833...
Arc length = pi*r*theta/180 = 17.76 units of length.
6.28 cm.
17
It will be 1/3 of the circle's circumference