Chat with our AI personalities
Take the natural logarithm (ln) of both sides of the equation to cancel the exponent (e). For example, ify=Aexlog transform both sides and apply the rules of logarithms:ln(y)=ln(Aex)ln(y)=ln(A)+ln(ex)ln(y)=ln(A)+xrearrange in terms of x:x=ln(y)-ln(A), or more simplyx=ln(y/A)
To find the value of x when 2^x = 5, we can take the logarithm of both sides. Using the natural logarithm (ln) gives us: ln(2^x) = ln(5). Using the property of logarithms that allows us to bring the exponent down as a multiplier, we get: x*ln(2) = ln(5). Finally, dividing both sides by ln(2) gives us the value of x: x = ln(5)/ln(2), which is approximately 2.322.
18
It is ln[1+sqrt(2)] = 0.8814, approx.
51-2x = 0.25 51 * 5-2x = 0.25 5-2x = 0.05 -2x*ln(5) = ln(0.05) x = ln(0.05)/[-2*ln(5)] = 0.931