4^2+3+1
-1 + 2 - 3 + 4! = -1 + 2 - 3 + 24 = 22
(3x4) / 2 - 1 [(4-2)x1]+3 [(4x2)/2]+1
(4 + 3 + 1) x 2 = 16
2 x ( 4(3) - 1) = 22
(2(4 + 1) - 3)
3-1=2 4-2=2 2+3-4+1=2 3-2+1=2
1 * (2 + 3) + 4! = 294! = 1*2*3*4 = 24
It is by: 3*(4+2)+1 = 19
(4! - 3)*1*2
4^2+3+1
-1 + 2 - 3 + 4! = -1 + 2 - 3 + 24 = 22
(2 - 1) × 4 + 3 = 7.
2 * 4! - 1 - 3 = 44
[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7[(-4) + (-3)]*[(-2 - (-1)] = (-4 -3)*(-2 + 1) = -7*-1 = +7
(3x4) / 2 - 1 [(4-2)x1]+3 [(4x2)/2]+1
(4 x 3) + 2 + 1 +1 = 16