substitute the numbers into the inequality and see if it is true. EX: x > y+ 3 for the point (1, 6) .... 1 > 6 + 3 is not true so this point is not a solution.
The local solution of an ordinary differential equation (ODE) is the solution you get at a specific point of the function involved in the differential equation. One can Taylor expand the function at this point, turning non-linear ODEs into linear ones, if needed, to find the behavior of the solution around that one specific point. Of course, a local solution tells you very little about the ODE's global solution, but sometimes you don't want to know that anyways.
To determine if a point is a solution on a graph, check if the point's coordinates (x, y) satisfy the equation of the graph. If the point lies on the curve or line representing the equation, it is a solution. For instance, if the equation is y = f(x), substitute the x-coordinate into the equation to see if it equals the y-coordinate. If it does, the point is a solution.
With a formula, you know the variable's value, and you have to calculate the value of the function of it. With an equation, you know the function's value, and you have to calculate the value of the variable.
Take a sample point from either the top or bottom of the graph. I like to use (0,0) if it is not on the line. Substitute it into the inequality and if it is true then it represents all points on that line as true and vice versa.
When graphing inequalities you use a circle to indicate a value on a graph. If the value is included in the solution to the inequality you would fill in the circle. If the value that the circle represents is not included in the solution you would leave the circle unshaded.
how about i dont know
Pick a test point, (the origin is the most convenient unless the line of the inequality falls on it), and plug it into the same linear inequality. If the test point makes the inequality true, then shade that side of the line. If the test point makes the inequality false, then shade the opposite side of the line.
The local solution of an ordinary differential equation (ODE) is the solution you get at a specific point of the function involved in the differential equation. One can Taylor expand the function at this point, turning non-linear ODEs into linear ones, if needed, to find the behavior of the solution around that one specific point. Of course, a local solution tells you very little about the ODE's global solution, but sometimes you don't want to know that anyways.
An equation has an equal sign, which means that we know what the variable is equal to :)
A number is called a "solution" for an inequality if, when you plug that number into the variable, the inequality becomes true. For example, 4 is a solution to the inequality "x + 5 < 10", because when you plug in 4 for x, you get "4 + 5 < 10", which is true. (4 plus 5 is 9, which is less than 10.) On the other hand, 6 is not a solution to the inequality "x + 5 < 10", because when you plug in 6 for x, you get "6 + 5 < 10", which is false. (6 plus 5 is 11, which isn't less than 10.)
The coordinates of the point satisfy each of the equations.
The solution to the inequality x^2 > 36 can be found by first determining the values that make the inequality true. To do this, we need to find the values of x that satisfy the inequality. Since x^2 > 36, we know that x must be either greater than 6 or less than -6. Therefore, the solution to the inequality x^2 > 36 is x < -6 or x > 6.
With a formula, you know the variable's value, and you have to calculate the value of the function of it. With an equation, you know the function's value, and you have to calculate the value of the variable.
With a formula, you know the variable's value, and you have to calculate the value of the function of it. With an equation, you know the function's value, and you have to calculate the value of the variable.
Take a sample point from either the top or bottom of the graph. I like to use (0,0) if it is not on the line. Substitute it into the inequality and if it is true then it represents all points on that line as true and vice versa.
I don't know, I suppose we have to ask a chemist.
Melting point is a unique characteristic of a substance.