your moms but
Yes, that's correct. According to the Factor Theorem, if a polynomial ( P(x) ) is divided by ( (x - a) ) and the remainder is zero, then ( (x - a) ) is indeed a factor of the polynomial. This means that ( P(a) = 0 ), indicating that ( a ) is a root of the polynomial. Thus, the polynomial can be expressed as ( P(x) = (x - a)Q(x) ) for some polynomial ( Q(x) ).
There is no other name for a polynomial.
factor
Polynomials are not closed under division because dividing one polynomial by another can result in a quotient that is not a polynomial. Specifically, when a polynomial is divided by another polynomial of a higher degree, the result can be a rational function, which includes terms with variables in the denominator. For example, dividing (x^2) by (x) gives (x), a polynomial, but dividing (x) by (x^2) results in (\frac{1}{x}), which is not a polynomial. Thus, the closure property does not hold for polynomial division.
Zeros and factors are closely related in polynomial functions. A zero of a polynomial is a value of the variable that makes the polynomial equal to zero, while a factor is a polynomial that divides another polynomial without leaving a remainder. If ( x = r ) is a zero of a polynomial ( P(x) ), then ( (x - r) ) is a factor of ( P(x) ). Thus, finding the zeros of a polynomial is equivalent to identifying its factors.
Yes, that's correct. According to the Factor Theorem, if a polynomial ( P(x) ) is divided by ( (x - a) ) and the remainder is zero, then ( (x - a) ) is indeed a factor of the polynomial. This means that ( P(a) = 0 ), indicating that ( a ) is a root of the polynomial. Thus, the polynomial can be expressed as ( P(x) = (x - a)Q(x) ) for some polynomial ( Q(x) ).
The zero of a polynomial in the variable x, is a value of x for which the polynomial is zero. It is a value where the graph of the polynomial intersects the x-axis.
The graph of a polynomial in X crosses the X-axis at x-intercepts known as the roots of the polynomial, the values of x that solve the equation.(polynomial in X) = 0 or otherwise y=0
It is a polynomial in x and y.
Evaluating a polynomial is finding the value of the polynomial for a given value of the variable, usually denoted by x. Solving a polynomial equation is finding the value of the variable, x, for which the polynomial equation is true.
There is no other name for a polynomial.
2 or 5
factor
Polynomials are not closed under division because dividing one polynomial by another can result in a quotient that is not a polynomial. Specifically, when a polynomial is divided by another polynomial of a higher degree, the result can be a rational function, which includes terms with variables in the denominator. For example, dividing (x^2) by (x) gives (x), a polynomial, but dividing (x) by (x^2) results in (\frac{1}{x}), which is not a polynomial. Thus, the closure property does not hold for polynomial division.
Zeros and factors are closely related in polynomial functions. A zero of a polynomial is a value of the variable that makes the polynomial equal to zero, while a factor is a polynomial that divides another polynomial without leaving a remainder. If ( x = r ) is a zero of a polynomial ( P(x) ), then ( (x - r) ) is a factor of ( P(x) ). Thus, finding the zeros of a polynomial is equivalent to identifying its factors.
Suppose p(x) is a polynomial in x. Then p(a) = 0 if and only if (x-a) is a factor of p(x).
false - apex