Suppose p(x) is a polynomial in x.
Then p(a) = 0 if and only if (x-a) is a factor of p(x).
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
false - apex
TRue
a
The given polynomial does not have factors with rational coefficients.
In algebra, the factor theorem is a theorem linking factors and zeros of a polynomial. It is a special case of the polynomial remainder theorem.The factor theorem states that a polynomial has a factor if and only if
In algebra, the factor theorem is a theorem linking factors and zeros of a polynomial. It is a special case of the polynomial remainder theorem.The factor theorem states that a polynomial has a factor if and only if
To determine which binomial is a factor of a given polynomial, you can apply the Factor Theorem. According to this theorem, if you substitute a value ( c ) into the polynomial and it equals zero, then ( (x - c) ) is a factor. Alternatively, you can perform polynomial long division or synthetic division with the given binomials to see if any of them divides the polynomial without a remainder. If you provide the specific polynomial and the binomials you're considering, I can assist further.
x-a is a factor of the polynomial p(x),if p(a)=0.also,if x-a is a factor of p(x), p(a)=0.
Yes, that's correct. According to the Factor Theorem, if a polynomial ( P(x) ) is divided by ( (x - a) ) and the remainder is zero, then ( (x - a) ) is indeed a factor of the polynomial. This means that ( P(a) = 0 ), indicating that ( a ) is a root of the polynomial. Thus, the polynomial can be expressed as ( P(x) = (x - a)Q(x) ) for some polynomial ( Q(x) ).
To determine which linear expression is a factor of a given polynomial function, you typically need to perform polynomial division or use the Factor Theorem. If you can substitute a root of the polynomial into the linear expression and obtain a value of zero, then that linear expression is indeed a factor. Alternatively, if you have the polynomial's roots, any linear expression of the form ( (x - r) ), where ( r ) is a root, will be a factor. Please provide the specific polynomial function for a more accurate response.
Euclid
To find all rational roots of a polynomial equation, you can use the Rational Root Theorem. This theorem states that any rational root of a polynomial equation in the form of (anxn an-1xn-1 ... a1x a0 0) must be a factor of the constant term (a0) divided by a factor of the leading coefficient (an). By testing these possible rational roots using synthetic division or polynomial long division, you can determine which ones are actual roots of the equation.
If there is no common factor then the polynomial cannot be factorised. If there is no common factor then the polynomial cannot be factorised. If there is no common factor then the polynomial cannot be factorised. If there is no common factor then the polynomial cannot be factorised.
Factor the polynomial x2 - 10x + 25. Enter each factor as a polynomial in descending order.
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
Start by looking for a common factor. Separate this factor, then factor the remaining polynomial.