Manipulate normally, noting:
(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x
= 1 + cot² x
= 1 + (cos x / sin x)²
= 1 + cos² x / sin² x
= 1 + cos² x / (1 - cos² x)
= ((1 - cos² x) + cos² x)/(1 - cos² x)
= 1/(1² - cos² x)
= 1/((1 + cos x)(1 - cos x))
= 1/(1 - cos x)/(1 + cos x)
QED.
3cos
Until an "equals" sign shows up somewhere in the expression, there's nothing to prove.
There is no reason at all. For most angles sin plus cos do not equal one.
No, but cos(-x) = cos(x), because the cosine function is an even function.
Sin 15 + cos 105 = -1.9045
3cos
Until an "equals" sign shows up somewhere in the expression, there's nothing to prove.
You need to make use of the formulae for sin(A+B) and cos(A+B), and that cos is an even function: sin(A+B) = cos A sin B + sin A cos B cos(A+B) = cos A cos B - sin A sin B cos even fn → cos(-x) = cos(x) To prove: (cos A + sin A)(cos 2A + sin 2A) = cos A + sin 3A The steps are to work with the left hand side, expand the brackets, collect [useful] terms together, apply A+B formula above (backwards) and apply even nature of cos function: (cos A + sin A)(cos 2A + sin 2A) = cos A cos 2A + cos A sin 2A + sin A cos 2A + sin A sin 2A = (cos A cos 2A + sin A sin 2A) + (cos A sin 2A + sin A cos 2A) = cos(A - 2A) + sin(A + 2A) = cos(-A) + sin 3A = cos A + sin 3A which is the right hand side as required.
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
2 cos * cos * -1 = 2cos(square) * -1 =cos(square) + cos(square) *-1 =1- sin(square) +cos(square) * -1 1 - 1 * -1 =0
There is no reason at all. For most angles sin plus cos do not equal one.
No, but cos(-x) = cos(x), because the cosine function is an even function.
Not correct. sin2alpha + cos2alpha = 1
When tan A = 815, sin A = 0.9999992 and cos A = 0.0012270 so that sin A + cos A*cos A*(1-cos A) = 1.00000075, approx.
sin cubed + cos cubed (sin + cos)( sin squared - sin.cos + cos squared) (sin + cos)(1 + sin.cos)
Sin 15 + cos 105 = -1.9045
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)