No, only their positions will change.
To rotate a figure 90 degrees clockwise around the origin on a coordinate grid, you can use the transformation rule: (x, y) becomes (y, -x). For the point (5, 5), applying this rule results in (5, -5). Therefore, after a 90-degree clockwise rotation, the new coordinates of the point are (5, -5).
To rotate a point 180 degrees counterclockwise about the origin, you can simply change the signs of both the x and y coordinates of the point. For example, if the original point is (x, y), after the rotation, the new coordinates will be (-x, -y). This effectively reflects the point across the origin.
To rotate a point (x, y) 90 degrees clockwise around the origin on a graph, you transform the coordinates using the formula (x', y') = (y, -x). This means that the new x-coordinate becomes the original y-coordinate, and the new y-coordinate becomes the negative of the original x-coordinate. For example, the point (2, 3) would rotate to (3, -2).
The same as 180 degrees clockwise. What do you mean "the answer to"?
Move it 3 times* * * * *or once in the anti-clockwise direction.
You dont, its just 90 degrees 3 times..
No, only their positions will change.
rotate it 90 degrees
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
I dont really know if this is right but i think to do this problem you have to take a point then rotate the paper counter clockwise around the origin then you have a new point which is called a prime. Then reflect it over the y axis on the graph.
To rotate a figure 180 degrees clockwise, you can achieve this by first reflecting the figure over the y-axis and then reflecting it over the x-axis. This double reflection effectively rotates the figure 180 degrees clockwise around the origin.
To rotate a point (x, y) 90 degrees clockwise around the origin on a graph, you transform the coordinates using the formula (x', y') = (y, -x). This means that the new x-coordinate becomes the original y-coordinate, and the new y-coordinate becomes the negative of the original x-coordinate. For example, the point (2, 3) would rotate to (3, -2).
The same as 180 degrees clockwise. What do you mean "the answer to"?
To rotate a figure 90 degrees clockwise about the origin, simply swap the x and y coordinates of each point and then negate the new y-coordinate. This is equivalent to reflecting the figure over the line y = x and then over the y-axis.
The point with coordinates (p, q) will be rotated to the point with coordinates [(p - q)/sqrt(2), (p + q)/sqrt(2)].
y = 20x is symmetric about the origin. (If you rotate it around the origin, it will look the same before it is rotated 360 degrees).