No, only their positions will change.
The same as 180 degrees clockwise. What do you mean "the answer to"?
270 degrees is 3/4 of the way around the circle. Ir is the same as rotating it 90 degrees (1/4) of the way clockwise. Turn it so anything that was pointing straight up would be pointing to the right.
True
The best way is this:Draw a line from the point closest to the origin to the actual origin. Rotate the line however many degrees you are told, whichever way you are told. After you have the point closest to the origin rotated, you can either rotate the other points the same way or just draw them in based on where the other point lies.Another way, sort of the cheater way, is to just take a piece of tracing paper and trace the figure onto it. Hold it down by pressing your pencil on the tracing paper where the origin is, and rotating it however many degrees, whichever way you are told.This is for ROTATE. To reflect just use the opposite signs on the coordinates.
{1 0} {0 -1}
A) Rotate 360 degrees counterclockwise, then shift 1 unit up. B) Rotate 180 degrees counterclockwise, then shift 1 unit down. C)Rotate 90 degrees counterclockwise, then shift 1 unit up. D) Rotate 270 degrees counterclockwise, then shift 1 unit down.
You dont, its just 90 degrees 3 times..
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
Ex: -1,-2 Switch the numbers, so with the example it would be -2,-1. Next multiply your x coordinate by -1,so the example would be 2,-1
No, only their positions will change.
The same as 180 degrees clockwise. What do you mean "the answer to"?
The x,y origin is 0,0
Move it 3 times* * * * *or once in the anti-clockwise direction.
270 degrees is 3/4 of the way around the circle. Ir is the same as rotating it 90 degrees (1/4) of the way clockwise. Turn it so anything that was pointing straight up would be pointing to the right.
To rotate a figure 90 degrees clockwise about the origin, simply swap the x and y coordinates of each point and then negate the new y-coordinate. This is equivalent to reflecting the figure over the line y = x and then over the y-axis.
For every point A = (x,y) in your figure, a 180 degree counterclockwise rotation about the origin will result in a point A' = (x', y') where: x' = x * cos(180) - y * sin(180) y' = x * sin(180) + y * cos(180) Happy-fun time fact: This is equivalent to using a rotation matrix from Linear Algebra! Because a rotation is an isometry, you only have to rotate each vertex of a polygon, and then connect the respective rotated vertices to get the rotated polygon. You can rotate a closed curve as well, but you must figure out a way to rotate the infinite number of points in the curve. We are able to do this with straight lines above due to the property of isometries, which preserves distances between points.