To rotate a figure 270 degrees counterclockwise about the origin, you can achieve this by rotating it 90 degrees clockwise, as 270 degrees counterclockwise is equivalent to 90 degrees clockwise. For each point (x, y) of the figure, the new coordinates after the rotation will be (y, -x). This transformation effectively shifts the figure to its new orientation while maintaining its shape and size.
No, only their positions will change.
To rotate a point 180 degrees counterclockwise about the origin, you can simply change the signs of both the x and y coordinates of the point. For example, if the original point is (x, y), after the rotation, the new coordinates will be (-x, -y). This effectively reflects the point across the origin.
The same as 180 degrees clockwise. What do you mean "the answer to"?
270 degrees is 3/4 of the way around the circle. Ir is the same as rotating it 90 degrees (1/4) of the way clockwise. Turn it so anything that was pointing straight up would be pointing to the right.
True
{1 0} {0 -1}
A) Rotate 360 degrees counterclockwise, then shift 1 unit up. B) Rotate 180 degrees counterclockwise, then shift 1 unit down. C)Rotate 90 degrees counterclockwise, then shift 1 unit up. D) Rotate 270 degrees counterclockwise, then shift 1 unit down.
You dont, its just 90 degrees 3 times..
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
No, only their positions will change.
Ex: -1,-2 Switch the numbers, so with the example it would be -2,-1. Next multiply your x coordinate by -1,so the example would be 2,-1
To rotate a point 180 degrees counterclockwise about the origin, you can simply change the signs of both the x and y coordinates of the point. For example, if the original point is (x, y), after the rotation, the new coordinates will be (-x, -y). This effectively reflects the point across the origin.
The same as 180 degrees clockwise. What do you mean "the answer to"?
Move it 3 times* * * * *or once in the anti-clockwise direction.
The x,y origin is 0,0
270 degrees is 3/4 of the way around the circle. Ir is the same as rotating it 90 degrees (1/4) of the way clockwise. Turn it so anything that was pointing straight up would be pointing to the right.
To rotate a figure 90 degrees clockwise about the origin, simply swap the x and y coordinates of each point and then negate the new y-coordinate. This is equivalent to reflecting the figure over the line y = x and then over the y-axis.