You use the identity sin2x + cos2x = 1 (to simplify the expression in parentheses), and convert all functions to sines and cosines.
sec x tan x (1 - sin2x)
= (1/cos x) (sin x / cos x) (cos2x)
= (sin x / cos2x) cos2x
= sin x
The answer is 4 squared minus 2 squared as 4 squared is 16 minus 2 squared, which is 4, gives you 12 as an answer.
It is 1.
X= plus or minus 1
(x - 16)(x + 2) x = 16 or -2
(9x + 8)(9x - 8)
-22 - -22
By factoring I get x-3 divided by x+3
The answer is 4 squared minus 2 squared as 4 squared is 16 minus 2 squared, which is 4, gives you 12 as an answer.
There is a trigonometric identity that states that sec2(x) - tan2(x) = 1, for every x. By rearranging this formula we can find that sec2(x) - 1 = tan2(x).
It is 1.
X= plus or minus 1
i = sqrt of (-1) ( imaginary) i squared = sqrt(-1) x sqrt (-1) = -1 (minus one)
variation
3c(squared)-17c-6 = 0 (3c+1)(c-6) = 0 c= negative one third or positive 6
(x - 16)(x + 2) x = 16 or -2
Without knowing what "x" is, we cannot say what the answer will be. And without knowing the answer, we cannot solve for "x". Set x at zero, for example. Zero squared is zero, plus 6 time zero which is zero, minus 55. Your answer is then -55. Set x at one, for example. One squared is one, plus 6 times 1 which is six, minus 55. Your answer is then -48. Etc.
The expression 2x squared minus x squared simplifies to x squared. This is because when subtracting like terms, you subtract the coefficients while keeping the variable and its exponent the same. In this case, 2x squared minus x squared leaves you with just x squared.