You cannot work a simultaneous equation. You require a system of equations. How you solve them depends on their nature: two or more linear equations are relatively easy to solve by eliminating variables - one at a time and then substituting these values in the earlier equations. For systems of equations containing non-linear equations it is simpler to substitute for variable expression for one of the variables at the start and working towards the other variable(s).
1. Elimination: Select two equations and a variable to eliminate. Multiply each equation by the coefficient if that variable in the other equation. If the signs of the coefficient for that variable in the resulting equations are the same then subtract one new equation from the other. If they have opposite signs then add them. You will now have an equation without that variable. Repeat will other pairs and you will end up with one fewer equation and one fewer variable. Repeat this process: after each round you will have one fewer equation and one fewer variable. Keep going until you are left with one equation in one variable. Solve that. Then work backwards solving for the other variables.2. Substitution: Select a equation and a variable. Make that variable the subject of the equation. The right hand side of this equation is an expression for that variable. Substitute this expression for the variable is each of the other equations. Again, one fewer equation in one fewer variable. Continue until you are left with one equation in one variable. Solve that. Then work backwards solving for the other variables.3. Matrix inversion: If A is the nxn matrix of coefficients, X is the nx1 [column] matrix of variables and B is the nx1 matrix of the equation constants, then X = A^-1*B where A^-1 is the inverse of matrix A.
To solve two simultaneous equations - usually two equations with the same two variables each - you can use a variety of techniques. Sometimes you can multiply one of the two equations by a constant, then add the two equations together, to get a resulting equation that has only one variable. Sometimes you can solve one of the equations for one variable, and replace this variable in the other equation. Once again, this should give you one equation with a single variable to be useful.
The general idea is to solve one of the equations for one variable - in terms of the other variable or variables. Then you can substitute the entire expression into another equation or other equations; as a result, if it works you should end up having one less equation, with one less variable.
There is no simple answer. Sometimes, the nature of one of the equations lends itself to the substitution method but at other times, elimination is better. If they are non-linear equations, and there is an easy substitution then that is the best approach. With linear equations, using the inverse matrix is the fastest method.
You select the linear combination of the equations in such a way that at each stage you eliminate one variable.You select the linear combination of the equations in such a way that at each stage you eliminate one variable.You select the linear combination of the equations in such a way that at each stage you eliminate one variable.You select the linear combination of the equations in such a way that at each stage you eliminate one variable.
NO
Linear Equations are equations with variable with power 1 for eg: 5x + 7 = 0 Simultaneous Equations are two equations with more than one variable so that solving them simultaneously
Assuming the simplest case of two equations in two variable: solve one of the equations for one of the variables. Substitute the value found for the variable in all places in which the variable appears in the second equation. Solve the resulting equation. This will give you the value of one of the variables. Finally, replace this value in one of the original equations, and solve, to find the other variable.
You can write an equivalent equation from a selected equation in the system of equations to isolate a variable. You can then take that variable and substitute it into the other equations. Then you will have a system of equations with one less equation and one less variable and it will be simpler to solve.
You cannot work a simultaneous equation. You require a system of equations. How you solve them depends on their nature: two or more linear equations are relatively easy to solve by eliminating variables - one at a time and then substituting these values in the earlier equations. For systems of equations containing non-linear equations it is simpler to substitute for variable expression for one of the variables at the start and working towards the other variable(s).
1. Elimination: Select two equations and a variable to eliminate. Multiply each equation by the coefficient if that variable in the other equation. If the signs of the coefficient for that variable in the resulting equations are the same then subtract one new equation from the other. If they have opposite signs then add them. You will now have an equation without that variable. Repeat will other pairs and you will end up with one fewer equation and one fewer variable. Repeat this process: after each round you will have one fewer equation and one fewer variable. Keep going until you are left with one equation in one variable. Solve that. Then work backwards solving for the other variables.2. Substitution: Select a equation and a variable. Make that variable the subject of the equation. The right hand side of this equation is an expression for that variable. Substitute this expression for the variable is each of the other equations. Again, one fewer equation in one fewer variable. Continue until you are left with one equation in one variable. Solve that. Then work backwards solving for the other variables.3. Matrix inversion: If A is the nxn matrix of coefficients, X is the nx1 [column] matrix of variables and B is the nx1 matrix of the equation constants, then X = A^-1*B where A^-1 is the inverse of matrix A.
To solve two simultaneous equations - usually two equations with the same two variables each - you can use a variety of techniques. Sometimes you can multiply one of the two equations by a constant, then add the two equations together, to get a resulting equation that has only one variable. Sometimes you can solve one of the equations for one variable, and replace this variable in the other equation. Once again, this should give you one equation with a single variable to be useful.
The general idea is to solve one of the equations for one variable - in terms of the other variable or variables. Then you can substitute the entire expression into another equation or other equations; as a result, if it works you should end up having one less equation, with one less variable.
There is no simple answer. Sometimes, the nature of one of the equations lends itself to the substitution method but at other times, elimination is better. If they are non-linear equations, and there is an easy substitution then that is the best approach. With linear equations, using the inverse matrix is the fastest method.
Equations can be classified according to the highest power of the variable. Since the highest power of the variable in a linear equation is one, it is also called a first-order equation.
By eliminating or substituting one of the variables in the two equations in order to find the value of the other variable. When this variable is found then substitute its value into the original equations in order to find the value of the other variable.