The statement of the problem is equivalent to sin x = - cos x. This is true for x = 135 degrees and x = -45 degrees, and also for (135 + 180n) degrees, where n is any integer.
No, but cos(-x) = cos(x), because the cosine function is an even function.
Sin 15 + cos 105 = -1.9045
The question contains an expression but not an equation. An expression cannot be solved.
sec + tan = cos /(1 + sin) sec and tan are defined so cos is non-zero. 1/cos + sin/cos = cos/(1 + sin) (1 + sin)/cos = cos/(1 + sin) cross-multiplying, (1 + sin)2 = cos2 (1 + sin)2 = 1 - sin2 1 + 2sin + sin2 = 1 - sin2 2sin2 + 2sin = 0 sin2 + sin = 0 sin(sin + 1) = 0 so sin = 0 or sin = -1 But sin = -1 implies that cos = 0 and cos is non-zero. Therefore sin = 0 or the solutions are k*pi radians where k is an integer.
either cos OR tan-sin equals zero socos=0 at pi/2 and 3pi/2ortan=sin which is impossibleim not sure though
Better formatting is cos(2x+20)=-0.5
For the product to be zero, any of the factors must be zero, so you solve, separately, the two equations: sin x = 0 and: cos x = 0 Like many trigonometric equations, this will have an infinity of solutions, since sine and cosine are periodic functions.
No, but cos(-x) = cos(x), because the cosine function is an even function.
Sin 15 + cos 105 = -1.9045
Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.Replace sin2x with the equivalent (1 - cos2x). Simplify, and use the quadratic equation, to solve for cos x.
1
cos x - 1 = 0 cos(x) = 1 x = 0 +/- k*pi radians where k = 1,2,3,...
To solve the equation 2cos(x) + cos(x) - 1 = 0, we first combine like terms to get 3cos(x) - 1 = 0. Then, we isolate the cosine term by adding 1 to both sides to get 3cos(x) = 1. Finally, we divide by 3 to solve for cos(x), which gives cos(x) = 1/3. Therefore, x = arccos(1/3) or approximately 70.53 degrees.
The question contains an expression but not an equation. An expression cannot be solved.
sec + tan = cos /(1 + sin) sec and tan are defined so cos is non-zero. 1/cos + sin/cos = cos/(1 + sin) (1 + sin)/cos = cos/(1 + sin) cross-multiplying, (1 + sin)2 = cos2 (1 + sin)2 = 1 - sin2 1 + 2sin + sin2 = 1 - sin2 2sin2 + 2sin = 0 sin2 + sin = 0 sin(sin + 1) = 0 so sin = 0 or sin = -1 But sin = -1 implies that cos = 0 and cos is non-zero. Therefore sin = 0 or the solutions are k*pi radians where k is an integer.
either cos OR tan-sin equals zero socos=0 at pi/2 and 3pi/2ortan=sin which is impossibleim not sure though
Well, darling, if we square the first equation and the second equation, add them together, and do some algebraic magic, we can indeed show that a squared plus b squared equals 89. It's like a little math puzzle, but trust me, the answer is as sassy as I am.