they do have calculators for these questions you knowsin 2x = (sin x)/22 sin x cos x - (1/2)sin x = 02 sin x(cos x - 1/4) = 02 sin x = 0 or cos x - 1/4 = 0sin x = 0 or cos x = 1/4in the interval [0, 360)sin x = 0, when x = 0, 180cos x = 1/4, when x = 75.52, 284.48Check:
It helps to convert this kind of equation into one that has only sines and cosines, by using the basic definitions of the other functions in terms of sines and cosines. sin x / (1 - cos x) = csc x + cot x sin x / (1 - cos x) = 1 / sin x + cos x / sin x Now it should be easy to do some simplifications: sin x / (1 - cos x) = (1 + cos x) / sin x Multiply both sides by 1 + cos x: sin x (1 + cos) / ((1 - cos x)(1 + cos x)) = (1 + cos x)2 / sin x sin x (1 + cos) / (1 - cos2x) = (1 + cos x)2 / sin x sin x (1 + cos) / sin2x = (1 + cos x)2 / sin x sin x (1 + cos x) / sin x = (1 + cos x)2 1 + cos x = (1 + cos x)2 1 = 1 + cos x cos x = 0 So, cos x can be pi/2, 3 pi / 2, etc. In some of the simplifications, I divided by a factor that might be equal to zero; this has to be considered separately. For example, what if sin x = 0? Check whether this is a solution to the original equation.
cotA*cotB*cotC = 1/[tanA+tanB+tanC]
cot 70 + 4 cos 70 = cos 70 / sin 70 + 4 cos 70 = cos 70 (1/sin 70 + 4) = cos 70 (csc 70 + 4) Numerical answer varies, depending on whether 70 is in degrees, radians, or grads.
sin 2x + cos x = 0 (substitute 2sin x cos x for sin 2x)2sin x cos x + cos x = 0 (divide by cos x each term to both sides)2sin x + 1 = 0 (subtract 1 to both sides)2sin x = -1 (divide by 2 to both sides)sin x = -1/2Because the period of the sine function is 360⁰, first find all solutions in [0, 360⁰].Because sin 30⁰ = 1/2 , the solutions of sin x = -1/2 in [0, 360] arex = 180⁰ + 30⁰ = 210⁰ (the sine is negative in the third quadrant)x = 360⁰ - 30⁰ = 330⁰ (the sine is negative in the fourth quadrant)Thus, the solutions of the equation are given byx = 210⁰ + 360⁰n and x = 330⁰ + 360⁰n, where n is any integer.
No. sin(0) = 0 So cos(0)*sin(0) = 0 so the left hand side = 1
a = 0, b = 0.
sec + tan = cos /(1 + sin) sec and tan are defined so cos is non-zero. 1/cos + sin/cos = cos/(1 + sin) (1 + sin)/cos = cos/(1 + sin) cross-multiplying, (1 + sin)2 = cos2 (1 + sin)2 = 1 - sin2 1 + 2sin + sin2 = 1 - sin2 2sin2 + 2sin = 0 sin2 + sin = 0 sin(sin + 1) = 0 so sin = 0 or sin = -1 But sin = -1 implies that cos = 0 and cos is non-zero. Therefore sin = 0 or the solutions are k*pi radians where k is an integer.
cos x - 1 = 0 cos(x) = 1 x = 0 +/- k*pi radians where k = 1,2,3,...
No, but cos(-x) = cos(x), because the cosine function is an even function.
1
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
Yes because if 1+0=1 than 0 plus b equals b
sqrt(3sin(x)=cos(x)=0 // Square both sides3sin(x) + cos(x) = 0 // subtract cos(x) from both sides3sin(x) = -cos(x) // rearrangesin(x)/cos(x) = -1/3 //sin(x)/cos(x) = tan(x)tan(x) = -1/3x = tan^-1(-1/3) == -18,43484882 // tan^-1(inverse tan)
1 plus 1 plus 1 plus 1 equals 1 times 4. 1 times 4 equals 4. 4 minus 4 equals 0. 0
It equals 7
Secant x= 1/cosx So if cos x=1 ,we know that x=0 degrees ( or radians), so secant x is 1/cos (0)=1/1=1