Chat with our AI personalities
Correlation analysis is the relationship of two values. When two items are similar, they will have a high correlation. Should they differ, they will be much lower in variables.
Yes. * A positive correlation is when the dependant variable increases as the independent one does. * A negative correlation is when the dependant variable decreases as the independent one increases. * Perfect correlation is when all the points lie along a straight line; no correlation is when the points lie all over the place. In calculating the correlation coefficient it can have a value between -1 and 1, with 0 indication no correlation and values between 0 and ±1 showing a greater correlation until ±1 which is perfect correlation. Moderate correlation would be one of these intermediate values, eg ±0.5, which shows the points are moderately related.
If you remove certain data points from a dataset, the correlation coefficient may be affected depending on the nature of the relationship between the removed data points and the remaining data points. If the removed data points have a strong relationship with the remaining data, the correlation coefficient may change significantly. However, if the removed data points have a weak or no relationship with the remaining data, the impact on the correlation coefficient may be minimal.
This means there is no correlation between the points on a graph. There is no linear relationship between the x and the y values at all. 0.98 is usually deemed to be an acceptable r2 value
A degree of correspondence or comparison between two math values.