what else do you want it to apply to
27
Going from 95 to 68 is a 28.42% decrease.
Yes, the empirical rule, also known as the 68-95-99.7 rule, is a characteristic of a normal distribution. It states that approximately 68% of the data falls within one standard deviation of the mean, about 95% falls within two standard deviations, and around 99.7% lies within three standard deviations. This rule helps in understanding the spread and variability of data in a normally distributed dataset.
Your question was incomplete. Need to resubmit. The 68-95-99 probabilities correspond to 1, 2 and 3 standard deviations respectively. 68% of the time, chicks will hatch in 20 to 22 days, 95% of the time in 19 to 23 days, and 99% of the time in 18 to 24 days. Suggest you break the question into three parts.
The empirical rule is 68 - 95 - 99.7. 68% is the area for +/- 1 standard deviation (SD) from the mean, 95% is the area for +/- 2 SD from the mean; and 99.7% is the area for +/- 3 SD from the mean.
what else do you want it to apply to
27
Going from 95 to 68 is a 28.42% decrease.
Yes, the empirical rule, also known as the 68-95-99.7 rule, is a characteristic of a normal distribution. It states that approximately 68% of the data falls within one standard deviation of the mean, about 95% falls within two standard deviations, and around 99.7% lies within three standard deviations. This rule helps in understanding the spread and variability of data in a normally distributed dataset.
Your question was incomplete. Need to resubmit. The 68-95-99 probabilities correspond to 1, 2 and 3 standard deviations respectively. 68% of the time, chicks will hatch in 20 to 22 days, 95% of the time in 19 to 23 days, and 99% of the time in 18 to 24 days. Suggest you break the question into three parts.
163
Approximately 99.7% of the data falls within 3 standard deviations of the mean in a normal distribution. This is known as the empirical rule or the 68-95-99.7 rule, which describes how data is distributed in a bell-shaped curve. Specifically, about 68% of the data falls within 1 standard deviation, and about 95% falls within 2 standard deviations of the mean.
28.42% decrease
68 over 7 as mixed number is 95/7
yes, since according to the 68-95-99.7 rule, the area within 3 standard deviations is 99.7%
1 remainder 27.