320
You don't have to test anything. Any number greater than 5 that ends in 5 is composite.
The next number in the series 3, 618, 72, is -1635. The relevant rule is Un = (-1161n2 + 4713n - 3546)/2 for n = 1, 2, 3, ...
Without specifying any limits on the number of uses of each digit and how many digits can be in the answer there are an infinite number of number that can be made using the digits {3, 5, 6, 1}. If the number has to be 4 digits long and each digit can only be used once, there are 24 numbers: 1356, 1365, 1536, 1563, 1635, 1653, 3156, 3165, 3516, 3561, 3615, 3651, 5136, 5163, 5316, 5361, 5613, 5631, 6135, 6153, 6315, 6351, 6513, 6531. If the number is 4 digits long and a digit can be repeated, then there are 256 numbers: 1111, 1113, 1115, 1116, 1131, 1133, 1135, 1136, 1151, 1153, 1155, 1156, 1161, 1163, 1165, 1166, 1311, 1313, 1315, 1316, 1331, 1333, 1335, 1336, 1351, 1353, 1355, 1356, 1361, 1363, 1365, 1366, 1511, 1513, 1515, 1516, 1531, 1533, 1535, 1536, 1551, 1553, 1555, 1556, 1561, 1563, 1565, 1566, 1611, 1613, 1615, 1616, 1631, 1633, 1635, 1636, 1651, 1653, 1655, 1656, 1661, 1663, 1665, 1666, 3111, 3113, 3115, 3116, 3131, 3133, 3135, 3136, 3151, 3153, 3155, 3156, 3161, 3163, 3165, 3166, 3311, 3313, 3315, 3316, 3331, 3333, 3335, 3336, 3351, 3353, 3355, 3356, 3361, 3363, 3365, 3366, 3511, 3513, 3515, 3516, 3531, 3533, 3535, 3536, 3551, 3553, 3555, 3556, 3561, 3563, 3565, 3566, 3611, 3613, 3615, 3616, 3631, 3633, 3635, 3636, 3651, 3653, 3655, 3656, 3661, 3663, 3665, 3666, 5111, 5113, 5115, 5116, 5131, 5133, 5135, 5136, 5151, 5153, 5155, 5156, 5161, 5163, 5165, 5166, 5311, 5313, 5315, 5316, 5331, 5333, 5335, 5336, 5351, 5353, 5355, 5356, 5361, 5363, 5365, 5366, 5511, 5513, 5515, 5516, 5531, 5533, 5535, 5536, 5551, 5553, 5555, 5556, 5561, 5563, 5565, 5566, 5611, 5613, 5615, 5616, 5631, 5633, 5635, 5636, 5651, 5653, 5655, 5656, 5661, 5663, 5665, 5666, 6111, 6113, 6115, 6116, 6131, 6133, 6135, 6136, 6151, 6153, 6155, 6156, 6161, 6163, 6165, 6166, 6311, 6313, 6315, 6316, 6331, 6333, 6335, 6336, 6351, 6353, 6355, 6356, 6361, 6363, 6365, 6366, 6511, 6513, 6515, 6516, 6531, 6533, 6535, 6536, 6551, 6553, 6555, 6556, 6561, 6563, 6565, 6566, 6611, 6613, 6615, 6616, 6631, 6633, 6635, 6636, 6651, 6653, 6655, 6656, 6661, 6663, 6665, 6666
There are a great number of them (450 in fact). All multiples of the lowest common multiple of 3 and 5 (which is 15) which are not multiples of the lcm of 3, 4 and 5 (which is 60) will solve the problem, thus any of the four digit numbers, namely: 1005, 1035, 1050, 1065, 1095, 1110, 1125, 1155, 1170, 1185, 1215, 1230, 1245, 1275, 1290, 1305, 1335, 1350, 1365, 1395, 1410, 1425, 1455, 1470, 1485, 1515, 1530, 1545, 1575, 1590, 1605, 1635, 1650, 1665, 1695, 1710, 1725, 1755, 1770, 1785, 1815, 1830, 1845, 1875, 1890, 1905, 1935, 1950, 1965, 1995, 2010, 2025, 2055, 2070, 2085, 2115, 2130, 2145, 2175, 2190, 2205, 2235, 2250, 2265, 2295, 2310, 2325, 2355, 2370, 2385, 2415, 2430, 2445, 2475, 2490, 2505, 2535, 2550, 2565, 2595, 2610, 2625, 2655, 2670, 2685, 2715, 2730, 2745, 2775, 2790, 2805, 2835, 2850, 2865, 2895, 2910, 2925, 2955, 2970, 2985, 3015, 3030, 3045, 3075, 3090, 3105, 3135, 3150, 3165, 3195, 3210, 3225, 3255, 3270, 3285, 3315, 3330, 3345, 3375, 3390, 3405, 3435, 3450, 3465, 3495, 3510, 3525, 3555, 3570, 3585, 3615, 3630, 3645, 3675, 3690, 3705, 3735, 3750, 3765, 3795, 3810, 3825, 3855, 3870, 3885, 3915, 3930, 3945, 3975, 3990, 4005, 4035, 4050, 4065, 4095, 4110, 4125, 4155, 4170, 4185, 4215, 4230, 4245, 4275, 4290, 4305, 4335, 4350, 4365, 4395, 4410, 4425, 4455, 4470, 4485, 4515, 4530, 4545, 4575, 4590, 4605, 4635, 4650, 4665, 4695, 4710, 4725, 4755, 4770, 4785, 4815, 4830, 4845, 4875, 4890, 4905, 4935, 4950, 4965, 4995, 5010, 5025, 5055, 5070, 5085, 5115, 5130, 5145, 5175, 5190, 5205, 5235, 5250, 5265, 5295, 5310, 5325, 5355, 5370, 5385, 5415, 5430, 5445, 5475, 5490, 5505, 5535, 5550, 5565, 5595, 5610, 5625, 5655, 5670, 5685, 5715, 5730, 5745, 5775, 5790, 5805, 5835, 5850, 5865, 5895, 5910, 5925, 5955, 5970, 5985, 6015, 6030, 6045, 6075, 6090, 6105, 6135, 6150, 6165, 6195, 6210, 6225, 6255, 6270, 6285, 6315, 6330, 6345, 6375, 6390, 6405, 6435, 6450, 6465, 6495, 6510, 6525, 6555, 6570, 6585, 6615, 6630, 6645, 6675, 6690, 6705, 6735, 6750, 6765, 6795, 6810, 6825, 6855, 6870, 6885, 6915, 6930, 6945, 6975, 6990, 7005, 7035, 7050, 7065, 7095, 7110, 7125, 7155, 7170, 7185, 7215, 7230, 7245, 7275, 7290, 7305, 7335, 7350, 7365, 7395, 7410, 7425, 7455, 7470, 7485, 7515, 7530, 7545, 7575, 7590, 7605, 7635, 7650, 7665, 7695, 7710, 7725, 7755, 7770, 7785, 7815, 7830, 7845, 7875, 7890, 7905, 7935, 7950, 7965, 7995, 8010, 8025, 8055, 8070, 8085, 8115, 8130, 8145, 8175, 8190, 8205, 8235, 8250, 8265, 8295, 8310, 8325, 8355, 8370, 8385, 8415, 8430, 8445, 8475, 8490, 8505, 8535, 8550, 8565, 8595, 8610, 8625, 8655, 8670, 8685, 8715, 8730, 8745, 8775, 8790, 8805, 8835, 8850, 8865, 8895, 8910, 8925, 8955, 8970, 8985, 9015, 9030, 9045, 9075, 9090, 9105, 9135, 9150, 9165, 9195, 9210, 9225, 9255, 9270, 9285, 9315, 9330, 9345, 9375, 9390, 9405, 9435, 9450, 9465, 9495, 9510, 9525, 9555, 9570, 9585, 9615, 9630, 9645, 9675, 9690, 9705, 9735, 9750, 9765, 9795, 9810, 9825, 9855, 9870, 9885, 9915, 9930, 9945, 9975, 9990 take your pick.
51.09375 = 5109375/100000 = 1635/3251.09375 = 5109375/100000 = 1635/3251.09375 = 5109375/100000 = 1635/3251.09375 = 5109375/100000 = 1635/32
1703 - 1635= 68
3,5,109. 3x5x109 = 1635.
Samuel De Champlain died on Dec,25, 1635
1635 grams is equivalent to approximately 3.60 pounds.
1635
1635
1635
in 1635 by me ha
1635/1636
Passions - 1999 1-1635 was released on: USA: 20 December 2005
Robert Hooke was born on July 28, 1635.