answersLogoWhite

0


Best Answer

(1 x 10^1) + (6 x 10^0) + (3/10^1) + (5/10^2)

User Avatar

Wiki User

8y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you write 16.35 in expanded form using exponents?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is 1635 - 1315?

320


What is the greatest prime you must consider to test whether 1635 is prime?

You don't have to test anything. Any number greater than 5 that ends in 5 is composite.


What number comes next in this series 3 618 72?

The next number in the series 3, 618, 72, is -1635. The relevant rule is Un = (-1161n2 + 4713n - 3546)/2 for n = 1, 2, 3, ...


What are All possible numbers using 3 5 6 1?

Without specifying any limits on the number of uses of each digit and how many digits can be in the answer there are an infinite number of number that can be made using the digits {3, 5, 6, 1}. If the number has to be 4 digits long and each digit can only be used once, there are 24 numbers: 1356, 1365, 1536, 1563, 1635, 1653, 3156, 3165, 3516, 3561, 3615, 3651, 5136, 5163, 5316, 5361, 5613, 5631, 6135, 6153, 6315, 6351, 6513, 6531. If the number is 4 digits long and a digit can be repeated, then there are 256 numbers: 1111, 1113, 1115, 1116, 1131, 1133, 1135, 1136, 1151, 1153, 1155, 1156, 1161, 1163, 1165, 1166, 1311, 1313, 1315, 1316, 1331, 1333, 1335, 1336, 1351, 1353, 1355, 1356, 1361, 1363, 1365, 1366, 1511, 1513, 1515, 1516, 1531, 1533, 1535, 1536, 1551, 1553, 1555, 1556, 1561, 1563, 1565, 1566, 1611, 1613, 1615, 1616, 1631, 1633, 1635, 1636, 1651, 1653, 1655, 1656, 1661, 1663, 1665, 1666, 3111, 3113, 3115, 3116, 3131, 3133, 3135, 3136, 3151, 3153, 3155, 3156, 3161, 3163, 3165, 3166, 3311, 3313, 3315, 3316, 3331, 3333, 3335, 3336, 3351, 3353, 3355, 3356, 3361, 3363, 3365, 3366, 3511, 3513, 3515, 3516, 3531, 3533, 3535, 3536, 3551, 3553, 3555, 3556, 3561, 3563, 3565, 3566, 3611, 3613, 3615, 3616, 3631, 3633, 3635, 3636, 3651, 3653, 3655, 3656, 3661, 3663, 3665, 3666, 5111, 5113, 5115, 5116, 5131, 5133, 5135, 5136, 5151, 5153, 5155, 5156, 5161, 5163, 5165, 5166, 5311, 5313, 5315, 5316, 5331, 5333, 5335, 5336, 5351, 5353, 5355, 5356, 5361, 5363, 5365, 5366, 5511, 5513, 5515, 5516, 5531, 5533, 5535, 5536, 5551, 5553, 5555, 5556, 5561, 5563, 5565, 5566, 5611, 5613, 5615, 5616, 5631, 5633, 5635, 5636, 5651, 5653, 5655, 5656, 5661, 5663, 5665, 5666, 6111, 6113, 6115, 6116, 6131, 6133, 6135, 6136, 6151, 6153, 6155, 6156, 6161, 6163, 6165, 6166, 6311, 6313, 6315, 6316, 6331, 6333, 6335, 6336, 6351, 6353, 6355, 6356, 6361, 6363, 6365, 6366, 6511, 6513, 6515, 6516, 6531, 6533, 6535, 6536, 6551, 6553, 6555, 6556, 6561, 6563, 6565, 6566, 6611, 6613, 6615, 6616, 6631, 6633, 6635, 6636, 6651, 6653, 6655, 6656, 6661, 6663, 6665, 6666


What four digit number is divisible by 3 and 5 but not 4?

There are a great number of them (450 in fact). All multiples of the lowest common multiple of 3 and 5 (which is 15) which are not multiples of the lcm of 3, 4 and 5 (which is 60) will solve the problem, thus any of the four digit numbers, namely: 1005, 1035, 1050, 1065, 1095, 1110, 1125, 1155, 1170, 1185, 1215, 1230, 1245, 1275, 1290, 1305, 1335, 1350, 1365, 1395, 1410, 1425, 1455, 1470, 1485, 1515, 1530, 1545, 1575, 1590, 1605, 1635, 1650, 1665, 1695, 1710, 1725, 1755, 1770, 1785, 1815, 1830, 1845, 1875, 1890, 1905, 1935, 1950, 1965, 1995, 2010, 2025, 2055, 2070, 2085, 2115, 2130, 2145, 2175, 2190, 2205, 2235, 2250, 2265, 2295, 2310, 2325, 2355, 2370, 2385, 2415, 2430, 2445, 2475, 2490, 2505, 2535, 2550, 2565, 2595, 2610, 2625, 2655, 2670, 2685, 2715, 2730, 2745, 2775, 2790, 2805, 2835, 2850, 2865, 2895, 2910, 2925, 2955, 2970, 2985, 3015, 3030, 3045, 3075, 3090, 3105, 3135, 3150, 3165, 3195, 3210, 3225, 3255, 3270, 3285, 3315, 3330, 3345, 3375, 3390, 3405, 3435, 3450, 3465, 3495, 3510, 3525, 3555, 3570, 3585, 3615, 3630, 3645, 3675, 3690, 3705, 3735, 3750, 3765, 3795, 3810, 3825, 3855, 3870, 3885, 3915, 3930, 3945, 3975, 3990, 4005, 4035, 4050, 4065, 4095, 4110, 4125, 4155, 4170, 4185, 4215, 4230, 4245, 4275, 4290, 4305, 4335, 4350, 4365, 4395, 4410, 4425, 4455, 4470, 4485, 4515, 4530, 4545, 4575, 4590, 4605, 4635, 4650, 4665, 4695, 4710, 4725, 4755, 4770, 4785, 4815, 4830, 4845, 4875, 4890, 4905, 4935, 4950, 4965, 4995, 5010, 5025, 5055, 5070, 5085, 5115, 5130, 5145, 5175, 5190, 5205, 5235, 5250, 5265, 5295, 5310, 5325, 5355, 5370, 5385, 5415, 5430, 5445, 5475, 5490, 5505, 5535, 5550, 5565, 5595, 5610, 5625, 5655, 5670, 5685, 5715, 5730, 5745, 5775, 5790, 5805, 5835, 5850, 5865, 5895, 5910, 5925, 5955, 5970, 5985, 6015, 6030, 6045, 6075, 6090, 6105, 6135, 6150, 6165, 6195, 6210, 6225, 6255, 6270, 6285, 6315, 6330, 6345, 6375, 6390, 6405, 6435, 6450, 6465, 6495, 6510, 6525, 6555, 6570, 6585, 6615, 6630, 6645, 6675, 6690, 6705, 6735, 6750, 6765, 6795, 6810, 6825, 6855, 6870, 6885, 6915, 6930, 6945, 6975, 6990, 7005, 7035, 7050, 7065, 7095, 7110, 7125, 7155, 7170, 7185, 7215, 7230, 7245, 7275, 7290, 7305, 7335, 7350, 7365, 7395, 7410, 7425, 7455, 7470, 7485, 7515, 7530, 7545, 7575, 7590, 7605, 7635, 7650, 7665, 7695, 7710, 7725, 7755, 7770, 7785, 7815, 7830, 7845, 7875, 7890, 7905, 7935, 7950, 7965, 7995, 8010, 8025, 8055, 8070, 8085, 8115, 8130, 8145, 8175, 8190, 8205, 8235, 8250, 8265, 8295, 8310, 8325, 8355, 8370, 8385, 8415, 8430, 8445, 8475, 8490, 8505, 8535, 8550, 8565, 8595, 8610, 8625, 8655, 8670, 8685, 8715, 8730, 8745, 8775, 8790, 8805, 8835, 8850, 8865, 8895, 8910, 8925, 8955, 8970, 8985, 9015, 9030, 9045, 9075, 9090, 9105, 9135, 9150, 9165, 9195, 9210, 9225, 9255, 9270, 9285, 9315, 9330, 9345, 9375, 9390, 9405, 9435, 9450, 9465, 9495, 9510, 9525, 9555, 9570, 9585, 9615, 9630, 9645, 9675, 9690, 9705, 9735, 9750, 9765, 9795, 9810, 9825, 9855, 9870, 9885, 9915, 9930, 9945, 9975, 9990 take your pick.