The three types of dilations are an enlarged image (the image is larger than the preimage), a reduced image (the image is smaller than the preimage) and an equal image (the image is the same size as the preimage).
The coordinates of the image are typically related to the coordinates of the preimage through a specific transformation, which can include translations, rotations, reflections, or dilations. For example, if a transformation is defined by a function or a matrix, the coordinates of the image can be calculated by applying that function or matrix to the coordinates of the preimage. Thus, the relationship depends on the nature of the transformation applied.
True. An isometry is a transformation that preserves distances and angles, meaning that the preimage and image are congruent. Examples of isometries include translations, rotations, and reflections, all of which maintain the shape and size of geometric figures.
similar
In a translation, the original figure is called the "preimage." The figure that results after the translation is referred to as the "image." A translation involves moving the preimage to a new location in the coordinate plane without changing its shape or size.
The answer is in the question! The orientation is the same as the preimage! Same = Not different.
A preimage is a transformed irritated or changed image. Such as a flipped triangle
A translation
Well, honey, when we talk about the orientation of an image compared to the preimage, we're looking at whether the image is flipped, turned, or stayed the same. If the image is flipped, we call it a reflection; if it's turned, we call it a rotation. And if it stayed the same, well, that's just boring old identity. So, in a nutshell, the orientation can change through reflection or rotation, or it can stay the same.
bottom right
The three types of dilations are an enlarged image (the image is larger than the preimage), a reduced image (the image is smaller than the preimage) and an equal image (the image is the same size as the preimage).
i think its glide reflection and reflection but if im wrong then i dont freakin know.
true
Yup
perpendicular bisector
answer
answer