Assuming free fall in a vacuum, an object will fall approximately 64 meters (210 feet) in 4 seconds, as acceleration due to gravity is 9.81 m/s^2. However, in reality, air resistance would slow down the fall, so the distance would be slightly less. It's important to consider factors such as air resistance, initial velocity, and gravitational acceleration when calculating the distance fallen in a specific timeframe.
In order to come up with an answer, we have to impose a couple of rules: 1). we're trying this on the earth 2). we're ignoring the effects of air 3). it's not moving at the beginning of the 5 seconds ... that's when you drop it from your hand Then the rock falls 400 ft in five seconds. What's really interesting is that it doesn't matter how much it weighs. ALL rocks fall the same distance in 5 seconds.
depends on the mass of the stone, the shape of the stone, and the height dropped from. sorry dude.
Because this is a free fall questions, the equation d=1/2gt² can be used. Gravity is a given, 9.8 m/s² and the time is your 15 seconds of free fall. d=1/2(9.8m/s²)(15s)²= 1,102.5m. To find feet multiply 3.28084 to answer because that is how many feet are in a meter.
It depends on the size, shape and weight of the object. That's only if air drag is important. Otherwise, on Earth, Galileo showed things accelerate all at the same rate. Approximately 1/2 x 32 x 42 or 256 ft. if it started at zero speed.
It has been known since the 16th century that the mass of an object is irrelevant to how far it will fall. The main factor influencing the rate of fall is the shape of the object and, therefore, the air resistance (or buoyancy).
An object in free fall will fall approximately 64 feet in 2 seconds.
1,100 to 1,300 feet.
Assuming free fall in a vacuum, an object will fall approximately 64 meters (210 feet) in 4 seconds, as acceleration due to gravity is 9.81 m/s^2. However, in reality, air resistance would slow down the fall, so the distance would be slightly less. It's important to consider factors such as air resistance, initial velocity, and gravitational acceleration when calculating the distance fallen in a specific timeframe.
The final velocity of an object in free-fall after 2.6 seconds is approximately 25.48 m/s. The distance the object will fall during this time is approximately 33 meters.
In order to come up with an answer, we have to impose a couple of rules: 1). we're trying this on the earth 2). we're ignoring the effects of air 3). it's not moving at the beginning of the 5 seconds ... that's when you drop it from your hand Then the rock falls 400 ft in five seconds. What's really interesting is that it doesn't matter how much it weighs. ALL rocks fall the same distance in 5 seconds.
depends on the mass of the stone, the shape of the stone, and the height dropped from. sorry dude.
Ignoring air resistance, it would be 706 meters .
The distance a rubber ball falls in 10 seconds will depend on the height from which it is dropped and the acceleration due to gravity. On Earth, neglecting air resistance, the general equation to calculate the distance fallen is: distance = 0.5 * acceleration due to gravity * time^2.
Assuming the object is in free fall near Earth's surface, it will fall approximately 343.3 meters (1126 feet) in 7 seconds. This calculation is based on the formula for free fall distance: d = 1/2 * g * t^2, where d is the distance fallen, g is the acceleration due to gravity, and t is the time in seconds.
Approximately... 1108 feet. Depending on several factors.
far locations