I donot know whether there is actually a zero-order derivative equation, where the equation is defined as having two sides with equality or inequality sign between them. If the question is about a zero-order derivative function, then the answer is yes, since the zero order derivative is the function itself. ------------------ However, as far as we can talk about the differential equation- there is no meaning of "Zero Degree" but as many times while using expansion of differential operator using binomial theorem or while using Leibnitz's rule of differentiation, we simply denote derivatives of zero degree for no differentiation, we can say, for understanding, tha the equations without derivatives eg. y =mx can be treated as Differential Equation of Zero Order.
in case of derivative w.r.t time first derivative with a variable x gives velocity second derivative gives acceleration thid derivative gives jerk
The degree of a differential equation is the POWER of the derivative of the highest order. Using f' to denote df/fx, f'' to denote d2f/dx2 (I hate this browser!!!), and so on, an equation of the form (f'')^2 + (f')^3 - x^4 = 17 is of second degree.
d2y/dx2 + 4*dy/dx + 4y = 2cos2xor d3y/dx3 -2*d2y/dx2 + dy/dx -2y = 12*sin2x
You use order of operations in equations that have more than one type of operation going on (for example, an equation with parenthesis, addition, and multiplication). You would use order of operations in equations like that so you know which operation to do first.
Laurent Veron has written: 'Singularities of solutions of second order quasilinear equations' -- subject(s): Differential equations, Elliptic, Differential equations, Nonlinear, Differential equations, Parabolic, Elliptic Differential equations, Nonlinear Differential equations, Numerical solutions, Parabolic Differential equations, Singularities (Mathematics)
Hyun-Ku Rhee has written: 'First-order partial differential equations' -- subject(s): Partial Differential equations 'Theory and application of hyperbolic systems of quasilinear equations' -- subject(s): Hyperbolic Differential equations, Quasilinearization
E. M. Landis has written: 'Second order equations of elliptic and parabolic type' -- subject- s -: Differential equations, Elliptic, Differential equations, Parabolic, Elliptic Differential equations, Parabolic Differential equations
The order of a differential equation is a highest order of derivative in a differential equation. For example, let us assume a differential expression like this. d2y/dx2 + (dy/dx)3 + 8 = 0 In this differential equation, we are seeing highest derivative (d2y/dx2) and also seeing the highest power i.e 3 but it is power of lower derivative dy/dx. According to the definition of differential equation, we should not consider highest power as order but should consider the highest derivative's power i.e 2 as order of the differential equation. Therefore, the order of the differential equation is second order.
Avron Douglis has written: 'Ideas in mathematics' -- subject(s): Mathematics 'Dirichlet's problem for linear elliptic partial differential equations of second and higher order' -- subject(s): Differential equations, Linear, Differential equations, Partial, Dirichlet series, Linear Differential equations, Partial Differential equations
The highest order of derivative is 2. There will be a second derivative {f''(x) or d2y/dx} in the equation.
I donot know whether there is actually a zero-order derivative equation, where the equation is defined as having two sides with equality or inequality sign between them. If the question is about a zero-order derivative function, then the answer is yes, since the zero order derivative is the function itself. ------------------ However, as far as we can talk about the differential equation- there is no meaning of "Zero Degree" but as many times while using expansion of differential operator using binomial theorem or while using Leibnitz's rule of differentiation, we simply denote derivatives of zero degree for no differentiation, we can say, for understanding, tha the equations without derivatives eg. y =mx can be treated as Differential Equation of Zero Order.
Amy J. Woods has written: 'The graphical solution of differential equations of the first order and first degree'
Homogeneous differential equations have all terms involving the dependent variable and its derivatives, while non-homogeneous equations include additional terms independent of the dependent variable.
The answer will depend on what kinds of equations: there are linear equations, polynomials of various orders, algebraic equations, trigonometric equations, exponential ones and logarithmic ones. There are single equations, systems of linear equations, systems of linear and non-linear equations. There are also differential equations which are classified by order and by degree. There are also partial differential equations.
Integration is the opposite of differentiation (taking the derivative). The derivative of a constant is zero. Integration is also called antidifferentiation since integration and differentiation are opposites of each other. The derivative of x^2 is 2x. The antiderivative (integral) of 2x is x^2. However, the derivative of x^2 + 7 is also 2x. Therefore, the antiderivative of 2x is x^2 + C, in general, where the constant C has to be determined from the context of the problem. In the above case, the constant happens to be C=7. We use integration to solve first order differential equations. When solving first order differential equations, like in "word problems", you must determine the integration constant using the initial conditions (ie the conditions we know to be true at t=0 - we usually know what these are), or the boundary conditions (ie the conditions we know to be true at x=0 and y=0).
Charles Franklin Bowles has written: 'Integral surfaces of pairs of differential equations of the third order ..' -- subject(s): Partial Differential equations, Surfaces