An inverse of a function is found by swapping the x and y variables. For example: the straight line function y = 2x, has an inverse of x = 2y. This can be rearranged into y = x/2.
Now take the function y = ex. The inverse is: x = ey. Unfortunately, there is no easy way to rearrange this to be y = {something}. So the logarithm function was created to handle this, and now the function {x = ey} can be written as y = ln(x).
Logarithmic functions are converted to become exponential functions because both are inverses of one another.
you should include the definition of logarithms how to solve logarithmic equations how they are used in applications of math and everyday life how to graph logarithms explain how logarithms are the inverses of exponential how to graph exponentials importance of exponential functions(growth and decay ex.) pandemics, population)
Exponential growth
input
Logarithmic equation
Exponential and logarithmic functions are inverses of each other.
They are inverses of each other.
Logarithmic functions are converted to become exponential functions because both are inverses of one another.
Exponential and logarithmic functions are different in so far as each is interchangeable with the other depending on how the numbers in a problem are expressed. It is simple to translate exponential equations into logarithmic functions with the aid of certain principles.
If y is an exponential function of x then x is a logarithmic function of y - so to change from an exponential function to a logarithmic function, change the subject of the function from one variable to the other.
you should include the definition of logarithms how to solve logarithmic equations how they are used in applications of math and everyday life how to graph logarithms explain how logarithms are the inverses of exponential how to graph exponentials importance of exponential functions(growth and decay ex.) pandemics, population)
He memorized tables of functions, exponential functions, logarithmic functions, etc, ... try looking up "handbook of mathematical functions"
Apex: false A logarithmic function is not the same as an exponential function, but they are closely related. Logarithmic functions are the inverses of their respective exponential functions. For the function y=ln(x), its inverse is x=ey For the function y=log3(x), its inverse is x=3y For the function y=4x, its inverse is x=log4(y) For the function y=ln(x-2), its inverse is x=ey+2 By using the properties of logarithms, especially the fact that a number raised to a logarithm of base itself equals the argument of the logarithm: aloga(b)=b you can see that an exponential function with x as the independent variable of the form y=f(x) can be transformed into a function with y as the independent variable, x=f(y), by making it a logarithmic function. For a generalization: y=ax transforms to x=loga(y) and vice-versa Graphically, the logarithmic function is the corresponding exponential function reflected by the line y = x.
The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)The given equation is exponential, not logarithmic!The logarithmic equation equivalent to ea= 47.38 isa = ln(47.38)ora = log(47.38)/log(e)
Exponential growth
No, an function only contains a certain amount of vertices; leaving a logarithmic function to NOT be the inverse of an exponential function.
No. The inverse of an exponential function is a logarithmic function.