6,520 Btus
You would need to remove approximately 1200 BTUs of heat to convert a gallon of water to ice. There are 8.34 lb in a gallon of water, which converting to lb-moles is 0.463. The latent heat of crystallization for water is -2583.4 BTU/lb-mole. Multiplying the two together and you get -1197 BTUs, which means you need to remove that amount of heat to convert the gallon of water to ice.
One BTU is the energy required to raise one pound of water by one degrees. Therefore, your answer would be one half.
2250
That will completely depend on how much water there is.
It takes approximately 970 BTUs to convert one pound of water at 212°F (100°C) to steam at the same temperature.
To calculate the BTUs required to raise the temperature of water, you can use the formula: BTUs = (pounds of water) x (temperature change in °F) x (1 BTU). For 15 pounds of water going from 100°F to 120°F, the calculation would be: BTUs = 15 pounds x 20°F x 1 BTU = 300 BTUs.
To calculate the BTUs required to raise the temperature of 15 pounds of water, you can use the formula: BTUs = Weight of water in pounds × Temperature change in degrees Fahrenheit × 1 BTU So, the calculation would be: BTUs = 15 lbs × (130°F - 100°F) × 1 BTU = 15 lbs × 30°F = 450 BTUs.
To change 5 pounds of ice at 20°F to steam at 220°F, you will need to go through multiple phases: raise ice temperature to 32°F, melt ice to water at 32°F, raise water temperature to 212°F, and then convert water to steam at 212°F to steam at 220°F. The total heat required, in BTUs, is around 503 BTUs per pound of ice, which translates to about 2515 BTUs for 5 pounds of ice.
To change 10 pounds of ice at 20 degrees Fahrenheit to steam at 220 degrees Fahrenheit, you need to supply enough energy to first melt the ice, then heat the water to the boiling point, and finally convert it to steam. This process requires approximately 180 BTUs per pound of ice to melt it, 180 BTUs per pound of water to heat it to the boiling point, and then 970 BTUs per pound of water to convert it to steam. So, for 10 pounds of ice, the total BTUs required would be around 18,300 BTUs.
It takes approximately 144 BTUs to change one pound of ice at 20°F to water at 212°F, and an additional 970 BTUs to change the water to steam at 220°F, for a total of 1114 BTUs.
6,520 Btus
50
There are no BTUs in an office water-cooler. But you can calculate how many BTUs are removed by the cooler. One BTU or British Thermal Unit is the amount of heat energy required to raise the temperature of one pound of water one degree Fahrenheit. There for when you remove one BTU you are lowering one pound of water one degree Fahrenheit. So if you know how many pounds of water you have and the temperature of the water you start with and the temperature of the water comming out of the cooler you can calculate how many BTUs the cooling unit of the water cooler has removed. BTU=Temp1 - Temp 2 X LB water
To convert a watt to BTUs, the factor is 1 kilowatt of power = 3412.1416 BTU/hr 3.412 BTUs equal a watt. 1200 watt = 4094.4 BTUS you will need to remove about 4100 BTU/hr
It depends on the volume of the room.
You would need to remove approximately 1200 BTUs of heat to convert a gallon of water to ice. There are 8.34 lb in a gallon of water, which converting to lb-moles is 0.463. The latent heat of crystallization for water is -2583.4 BTU/lb-mole. Multiplying the two together and you get -1197 BTUs, which means you need to remove that amount of heat to convert the gallon of water to ice.