Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
Allowing repetitions, there are 9 combinations. Without repeated digits, there is only one combination of 3 digits from 3.
There are different numbers of combinations for groups of different sizes out of 9: 1 combination of 9 digits 9 combinations of 1 digit and of 8 digits 36 combinations of 2 digits and of 7 digits 84 combinations of 3 digits and of 6 digits 126 combinations of 4 digits and of 5 digits 255 combinations in all.
3 x 3 x 3 x 3 = 81 combinations
You can make: 1 combination containing 0 digits, 7 combinations containing 1 digits, 21 combinations containing 2 digits, 35 combinations containing 3 digits, 35 combinations containing 4 digits, 21 combinations containing 5 digits, 7 combinations containing 6 digits, and 1 combinations containing 7 digits. That makes 2^7 = 128 in all.
6 for 3-digits, 6 for 2-digits, 3 for 1-digits, and 15 for all of the combinations
Assuming the digits cannot be repeated, there are 7 combinations with 1 digit, 21 combinations with 2 digits, 35 combinations with 3 digits, 35 combinations with 4 digits, 21 combinations with 5 digits, 7 combinations with 6 digits and 1 combinations with 7 digits. That makes a total of 2^7 - 1 = 127: too many for me to list. If digits can be repeated, there are infinitely many combinations.
Allowing repetitions, there are 9 combinations. Without repeated digits, there is only one combination of 3 digits from 3.
9.
The answer is 10C3 = 10*9*8/(3*2*1) = 120 combinations.
There are different numbers of combinations for groups of different sizes out of 9: 1 combination of 9 digits 9 combinations of 1 digit and of 8 digits 36 combinations of 2 digits and of 7 digits 84 combinations of 3 digits and of 6 digits 126 combinations of 4 digits and of 5 digits 255 combinations in all.
3 x 3 x 3 x 3 = 81 combinations
You can make: 1 combination containing 0 digits, 7 combinations containing 1 digits, 21 combinations containing 2 digits, 35 combinations containing 3 digits, 35 combinations containing 4 digits, 21 combinations containing 5 digits, 7 combinations containing 6 digits, and 1 combinations containing 7 digits. That makes 2^7 = 128 in all.
If you use each number once, there are six combinations.
You Can Create 999 Number combinations
If you use them only once each, you can make 15 combinations. 1 with all four digits, 4 with 3 digits, 6 with 2 digits, and 4 with 1 digit. There is also a combination containing no digits making 16 = 24 combinations from 4 elements.
The order of the digits in a combination does not matter. So 123 is the same as 132 or 312 etc. There are 10 combinations using just one of the digits (3 times). There are 90 combinations using 2 digits (1 once and 1 twice). There are 120 combinations using three different digit. 220 in all.