10
There are 13 combinations.
An infinite number of combinations of fractions can be aded together to equal three fourths.
36
14
To find how many counting numbers have four distinct nonzero digits that sum up to 11, we first identify all combinations of four distinct digits (from 1 to 9) that meet this criterion. The possible combinations of digits that add up to 11 are limited, and we can use combinatorial methods to list them. After identifying valid sets, we can calculate the permutations for each set (since the order of digits matters) to get the total count. Upon calculating, we find there are 24 valid combinations yielding 576 distinct numbers.
There are 13 combinations.
To determine how many numbers have a sum of digits equal to nine, we consider the possible combinations of digits that add up to nine. These combinations include (9,0), (8,1), (7,2), (6,3), and (5,4). Therefore, there are five possible combinations of digits that sum up to nine.
An infinite number of combinations of fractions can be aded together to equal three fourths.
36
14
To find how many counting numbers have four distinct nonzero digits that sum up to 11, we first identify all combinations of four distinct digits (from 1 to 9) that meet this criterion. The possible combinations of digits that add up to 11 are limited, and we can use combinatorial methods to list them. After identifying valid sets, we can calculate the permutations for each set (since the order of digits matters) to get the total count. Upon calculating, we find there are 24 valid combinations yielding 576 distinct numbers.
Three digits can't possibly add up to 900. The largest possible sum of 3 digits is (9 + 9 + 9) = 27.
There are a variety of three digits that add up to 25. Examples include 9, 8 and 8.
Because they're in multiples of three - a quick way to tell if a number is a multiple of three is to add up the digits and see if the digits add up to a multiple of three e.g 576, 5+7+6=18, 1+8=9, 9 is a multiple of three
27
22
992