The number of combinations - not to be confused with the number of permutations - is 2*21 = 42.
9x8x7x6x5x4x3x2x1 or 9! which equals 362880 possible combinations if no digits are repeated
If the numbers can be repeated and the numbers are 0-9 then there are 1000 different combinations.
7878
In a 7 segment display, the symbols can be created using a selected number of segments where each segment is treated as a different element.When 1 segment is used, the possible positions are 7because it can be any of the 7 segments (7C1=7).When 2 segments are used, the number of possible combinations are 7C2=21.When 3 segments are used, the number of possible combinations are 7C3=35When 4 segments are used, the number of possible combinations are 7C4=35When 5 segments are used, the number of possible combinations are 7C5=21When 6 segments are used, the number of possible combinations are 7C6=7When 7 segments are used, the number of possible combinations are 7C7=1Adding the combinations, 7+21+35+21+7+1=127Therefore, 127 symbols can be made using a 7 segment display!
Since a number can have infinitely many digits, there are infinitely many possible combinations.
The number of combinations - not to be confused with the number of permutations - is 2*21 = 42.
9x8x7x6x5x4x3x2x1 or 9! which equals 362880 possible combinations if no digits are repeated
If the numbers can be repeated and the numbers are 0-9 then there are 1000 different combinations.
18 different combinations. When a coin is tossed twice there are four possible outcomes, (H,H), (H,T), (T,H) and (T,T) considering the order in which they appear (first or second). But if we are talking of combinations of the two individual events, then the order in which they come out is not considered. So for this case the number of combinations is three: (H,H), (H,T) and (T,T). For the case of tossing a die once there are six possible events. The number of different combinations when tossing a coin twice and a die once is: 3x6 = 18 different combinations.
7878
In a 7 segment display, the symbols can be created using a selected number of segments where each segment is treated as a different element.When 1 segment is used, the possible positions are 7because it can be any of the 7 segments (7C1=7).When 2 segments are used, the number of possible combinations are 7C2=21.When 3 segments are used, the number of possible combinations are 7C3=35When 4 segments are used, the number of possible combinations are 7C4=35When 5 segments are used, the number of possible combinations are 7C5=21When 6 segments are used, the number of possible combinations are 7C6=7When 7 segments are used, the number of possible combinations are 7C7=1Adding the combinations, 7+21+35+21+7+1=127Therefore, 127 symbols can be made using a 7 segment display!
48
2^n possible combinations
To calculate the number of ways a committee of 6 can be chosen from 5 teachers and 4 students, we use the combination formula. The total number of ways is given by 9 choose 6 (9C6), which is calculated as 9! / (6! * 3!) = 84. Therefore, there are 84 ways to form a committee of 6 from 5 teachers and 4 students if all are equally eligible.
35
If repeats are allowed than an infinite number of combinations is possible.