There are 7 factorial, or 5,040 permutations of the letters of ALGEBRA. However, only 2,520 of them are distinguishable because of the duplicate A's.
three
7 factorial
There are 7 factorial, or 5,040 permutations of the letters of OCTOBER. However, only 2,520 of them are distinguishable because of the duplicate O's.
The word "algrebra" has 8 letters, with the letter 'a' appearing twice and 'r' appearing twice. To find the number of distinguishable permutations, we use the formula for permutations of multiset: ( \frac{n!}{n_1! \times n_2!} ), where ( n ) is the total number of letters and ( n_1, n_2 ) are the frequencies of the repeating letters. Thus, the number of distinguishable permutations is ( \frac{8!}{2! \times 2!} = 10080 ). Since all letters are counted in this formula, there are no indistinguishable permutations in this context.
We can clearly observe that the word "ellises" has 7 letters and three pairs of letters are getting repeated that are 'e','l' and 's'. So, Number of distinguishable permutations = 7!/(2!2!2!) = 7 x 6 x 5 x 3 = 630.
three
act
7 factorial
120?
2520.
The word mathematics has 11 letters; 2 are m, a, t. The number of distinguishable permutations is 11!/(2!2!2!) = 39916800/8 = 4989600.
There are 7 factorial, or 5,040 permutations of the letters of OCTOBER. However, only 2,520 of them are distinguishable because of the duplicate O's.
The word "algrebra" has 8 letters, with the letter 'a' appearing twice and 'r' appearing twice. To find the number of distinguishable permutations, we use the formula for permutations of multiset: ( \frac{n!}{n_1! \times n_2!} ), where ( n ) is the total number of letters and ( n_1, n_2 ) are the frequencies of the repeating letters. Thus, the number of distinguishable permutations is ( \frac{8!}{2! \times 2!} = 10080 ). Since all letters are counted in this formula, there are no indistinguishable permutations in this context.
The distinguishable permutations are the total permutations divided by the product of the factorial of the count of each letter. So: 9!/(2!*2!*1*1*1*1*1) = 362880/4 = 90,720
The solution is count the number of letters in the word and divide by the number of permutations of the repeated letters; 7!/3! = 840.
The number of permutations of the letters EFFECTIVE is 9 factorial or 362,880. To determine the distinct permutations, you have to compensate for the three E's (divide by 4) and the two F's (divide by 2), giving you 45,360.
We can clearly observe that the word "ellises" has 7 letters and three pairs of letters are getting repeated that are 'e','l' and 's'. So, Number of distinguishable permutations = 7!/(2!2!2!) = 7 x 6 x 5 x 3 = 630.