Ideally, everyone performing the experiment would include the following:
- distilled waterThere are a lot of factors involved. The cohesion and adhesion ('stickiness') of water molecules can be effected by things like oils (on surface pennies from peoples' skin) and other contaminates on the penny.
The size of the dropper or pipette will determine the size of each water droplet - the larger the drop, the fewer number of drops will fit on the penny.
The manner in which the water is added to the penny is also a factor. Water has a cohesive nature (the molecules are kind of like magnets and are attracted to one another). Therefore, if the drop from the pipette is allowed to touch the water already on the surface of the penny, the water can be 'pulled' out of the dropper. When this happens, the size (volume) of the drop is not always the same - it could be a very small amount (which will result in a very large number of drops), or a large amount.
Ideally, everyone performing the experiment would include the following:
- distilled water
- same type/size of calibrated dropper/pipette
- same date of penny
- penny cleaned as thoroughly as possible using same cleaning procedure
- same 'dropping' procedure
The controlled variable is the penny. The independent variable is the water. The dependent variable is the amount of water able to fit on the penny.
About 10
1 yard = 914.4 millimeters1 penny = 19 millimeters914.4/19 = 48.1548 pennys
About 100 billon
Many countries use a penny in their coinage, but they are of different sizes. You need to specify which country.
four
The controlled variable is the penny. The independent variable is the water. The dependent variable is the amount of water able to fit on the penny.
Yes, in this experiment, the variable "alcohol" refers to the liquid being tested to see how many drops can fit on a penny. By changing the type of alcohol used, you can observe how it affects the number of drops that can fit on the penny due to variations in surface tension and viscosity.
Approximately 30 to 35 drops of water can fit on a US penny before spilling over. The surface tension of the water allows it to form a dome-like shape on top of the penny, holding more drops than you might expect.
Alot of drops fit because if you keep the surface tension from moving then you could put as much drops as you can.] ==If you put a penny on a flat surface and keep its tension and keep the penny from moving you can put as much drops as you can till it leaks off. You cant put as much as you want cause the penny will overflow. its not a big object?
Approximately 30 to 40 drops of water can fit on a quarter, depending on the size of the drops and the condition of the coin's surface.
About 10
Ideally, everyone performing the experiment would include the following: - distilled waterThere are a lot of factors involved. The cohesion and adhesion ('stickiness') of water molecules can be effected by things like oils (on surface pennies from peoples' skin) and other contaminates on the penny. The size of the dropper or pipette will determine the size of each water droplet - the larger the drop, the fewer number of drops will fit on the penny. The manner in which the water is added to the penny is also a factor. Water has a cohesive nature (the molecules are kind of like magnets and are attracted to one another). Therefore, if the drop from the pipette is allowed to touch the water already on the surface of the penny, the water can be 'pulled' out of the dropper. When this happens, the size (volume) of the drop is not always the same - it could be a very small amount (which will result in a very large number of drops), or a large amount. Soap causes the cohesiveness ('stickiness') of the water molecules to decrease so they are not as strongly attracted to each other. Because of this, when soap is added to the water the number of drops that can be placed on the penny will decrease. The water molecules can't 'stick' together as well, so the water on top of the penny spills off sooner than it would with non-soapy water. Ideally, everyone performing the experiment would include the following: - distilled water (to start with) - same type/size of calibrated dropper/pipette - same date of penny - penny cleaned as thoroughly as possible using same cleaning procedure - same 'dropping' procedure
The surface tension of water allows it to form a dome-like shape on the penny, rather than spreading out. This enables numerous drops to be added before overflowing. Additionally, the small size of the water drops means that many can fit within the confined space of the penny's surface.
Ideally, everyone performing the experiment would include the following: - distilled waterThere are a lot of factors involved. The cohesion and adhesion ('stickiness') of water molecules can be effected by things like oils (on surface pennies from peoples' skin) and other contaminates on the penny. The size of the dropper or pipette will determine the size of each water droplet - the larger the drop, the fewer number of drops will fit on the penny. The manner in which the water is added to the penny is also a factor. Water has a cohesive nature (the molecules are kind of like magnets and are attracted to one another). Therefore, if the drop from the pipette is allowed to touch the water already on the surface of the penny, the water can be 'pulled' out of the dropper. When this happens, the size (volume) of the drop is not always the same - it could be a very small amount (which will result in a very large number of drops), or a large amount. Soap causes the cohesiveness ('stickiness') of the water molecules to decrease so they are not as strongly attracted to each other. Because of this, when soap is added to the water the number of drops that can be placed on the penny will decrease. The water molecules can't 'stick' together as well, so the water on top of the penny spills off sooner than it would with non-soapy water. Ideally, everyone performing the experiment would include the following: - distilled water (to start with) - same type/size of calibrated dropper/pipette - same date of penny - penny cleaned as thoroughly as possible using same cleaning procedure - same 'dropping' procedure
On average, a person's mouth can hold about 1-1.5 teaspoons of water comfortably. This would equate to roughly 75-115 drops of water, depending on the size of the droplets.
The surface tension of water is higher than that of oil, allowing the water drops to stick together and form a larger volume on the penny. Oil has lower surface tension, causing the drops to spread out and cover a larger area on the penny, resulting in fewer drops being able to fit.