There are 91 lines.
Only one line can be drawn through eight points.
1
Through a given plane, an infinite number of lines can be drawn perpendicular to it. For any point on the plane, there exists exactly one line that is perpendicular to the plane at that point. However, since there are infinitely many points on the plane, this leads to an infinite number of perpendicular lines overall.
Through any two distinct points, exactly one line can be drawn. For 5 non-collinear points, each pair of points can form a line. The number of ways to choose 2 points from 5 is given by the combination formula ( \binom{5}{2} ), which equals 10. Therefore, 10 lines can be drawn through 5 non-collinear points.
One.
There are 91 lines.
Only one line can be drawn through eight points.
1
15 lines.
Infinity
Through any two distinct points, exactly one line can be drawn. For 5 non-collinear points, each pair of points can form a line. The number of ways to choose 2 points from 5 is given by the combination formula ( \binom{5}{2} ), which equals 10. Therefore, 10 lines can be drawn through 5 non-collinear points.
3 lines and one plane
Through two given lines, there can be either zero, one, or infinitely many lines that can be drawn, depending on their relationship. If the two lines are parallel, no line can pass through both. If they intersect, exactly one line can be drawn through their intersection point. If they are coincident (the same line), then infinitely many lines can be drawn through them.
In Euclidian or plane geometry, there can be only one line through two fixed points. Lines cannot actually be drawn; if you see it it is not a geometric line. If the points are on a curved surface as in a geometry that is non-Euclidian, then there can be infinitely many lines connecting two points.
In Geometry
1 straight line. An infinite number of curved lines.