There are 81.
There are different numbers of combinations for groups of different sizes out of 9: 1 combination of 9 digits 9 combinations of 1 digit and of 8 digits 36 combinations of 2 digits and of 7 digits 84 combinations of 3 digits and of 6 digits 126 combinations of 4 digits and of 5 digits 255 combinations in all.
combinations
The number of different groups of students that can be formed from 16 students depends on the size of the groups being formed. If you are looking for all possible combinations of groups of any size (from 1 to 16), you can use the formula for combinations. The total number of combinations would be (2^{16} - 1) (subtracting 1 to exclude the empty group), which equals 65,535 different groups. If you specify a particular group size, the calculation would be different.
Assuming you are using combinations in the colloquial way (which is the mathematical "permutations" where order of selection does matter) to create a 3 digit number that does not start with 0, ie creating a number that is between 100 and 999 inclusive then: If repeats are not allowed there are 3 × 3 × 2 = 18 possible numbers If repeats are allowed, then there are 3 × 4 × 4 = 48 possible numbers. If you are using combinations in the mathematical sense where order of selection does not matter and are creating groups of 3 digits, then: If repeats are not allowed there are 4 possible groups If repeats are allowed there are 20 possible groups.
5
There are different numbers of combinations for groups of different sizes out of 9: 1 combination of 9 digits 9 combinations of 1 digit and of 8 digits 36 combinations of 2 digits and of 7 digits 84 combinations of 3 digits and of 6 digits 126 combinations of 4 digits and of 5 digits 255 combinations in all.
combinations
The number of different groups of students that can be formed from 16 students depends on the size of the groups being formed. If you are looking for all possible combinations of groups of any size (from 1 to 16), you can use the formula for combinations. The total number of combinations would be (2^{16} - 1) (subtracting 1 to exclude the empty group), which equals 65,535 different groups. If you specify a particular group size, the calculation would be different.
Assuming you are using combinations in the colloquial way (which is the mathematical "permutations" where order of selection does matter) to create a 3 digit number that does not start with 0, ie creating a number that is between 100 and 999 inclusive then: If repeats are not allowed there are 3 × 3 × 2 = 18 possible numbers If repeats are allowed, then there are 3 × 4 × 4 = 48 possible numbers. If you are using combinations in the mathematical sense where order of selection does not matter and are creating groups of 3 digits, then: If repeats are not allowed there are 4 possible groups If repeats are allowed there are 20 possible groups.
All blood groups are possible for children born from a combination such as this, regardless of which group is the male and which is the female.
5
diagonal
Interest groups play important roles in the process that determines economic policy.
Whoever asked this question you spelled combinations wrong and combinations are what are used to see how many pairs or groups you can make out of objects.
In the short form, the total number of different combinations you can get are 64. The work to obtain that number is shown below.Let's call each of them different names. There will be starter 1, 2, 3, 4, and 5.The possible combinations are as follows for the first set of numbers:# 1,2,3,4,5 # 1,2,3,5,4 # 1,2,4,5,3 # 1,2,4,3,5 # 1,3,2,4,5 # 1,3,2,5,4 # 1,3,4,2,5 # 1,3,4,5,2 # 1,4,2,3,5 # 1,4,2,5,3 # 1,4,3,2,5 # 1,4,3,5,2 # 1,5,2,3,4 # 1,5,2,4,3 # 1,5,3,4,2 # 1,5,3,2,4 Those are the possible combinations if the starter 1 went first. Multiply the total combinations for the first set by 4, and you get a total of 64 combinations.
The term used for groups of people whose birth determines their position in society is called a caste system.
4