answersLogoWhite

0

A set of four elements has 24 subsets, since for every element there are two options: it may, or may not, be in a subset. This set of subsets includes the empty set and the original set, and everything in between.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: How many subset are there in 1 3 5 7?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How many Subset are there in 1 3 5 7 9?

jongzkie ni


What are example of proper subset?

{1,2,4.7} is a proper subset of {1, 2, 3, 4, 4.7, 5}


How many subsets are there you 1 2 3 4 5 6 7 8 9 10 11?

Note that an empty set is included for the set of 11 numbers. That is 1 subset. Since order doesn't matter for this type of situation, we count the following number of subsets. 1-item subset: 11 choose 1 2-item subset: 11 choose 2 3-item subset: 11 choose 3 4-item subset: 11 choose 4 5-item subset: 11 choose 5 6-item subset: 11 choose 6 7-item subset: 11 choose 7 8-item subset: 11 choose 8 9-item subset: 11 choose 9 10-item subset: 11 choose 10 11-item subset: 11 choose 11 Note that the pattern of these values follows the Fibonacci sequence. If we add all of these values and 1 altogether, then you should get 2048 subsets that belong to the given set {1,2,3,4,5,6,7,8,9,10,11}. Instead of working out with cases, you use this form, which is 2ⁿ such that n is the number of items in the set. If there is 11 items in the set, then there are 211 possible subsets!


What are the example of a subset?

Let A be the set {1, 2, 3, 4}Let B be the set {1, 3}Let C be the set {1, 2, 4, 5}From this, we can say that B is a subset of A because all of the members of B are also members of A. In other words... B can be made up by selecting some of the pieces of A (in this case, 1 and 3). Note that C is not a subset of A because you cannot create C by selecting some parts of A. This is because C includes the number 5 and A doesn't.


What is the subset of set A12345?

There are 64 subsets, and they are:{}, {A}, {1}, {2}, {3}, {4}, {5}, {A,1}, {A,2}, {A,3}, {A,4}, {A,5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3, 5}, {4,5}, {A, 1, 2}, {A, 1, 3}, {A, 1, 4}, {A, 1, 5}, {A, 2, 3}, {A, 2, 4}, {A, 2, 5}, {A, 3, 4}, {A, 3, 5}, {A, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {A, 1, 2, 3}, {A, 1, 2, 4}, {A, 1, 2, 5}, {A, 1, 3, 4}, {A, 1, 3, 5}, {A, 1, 4, 5}, {A, 2, 3, 4}, {A, 2, 3, 5}, {A, 2, 4, 5}, {A, 3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {A, 1, 2, 3, 4}, {A, 1, 2, 3, 5}, {A, 1, 2, 4, 5}, {A, 1, 3, 4, 5}, {A, 2, 3, 4, 5}, {1, 2, 3, 4, 5} {A, 1, 2, 3,,4, 5} .