Time period is directly proportional to the square root of the length
So as we increase the length four times then period would increase by ./4 times ie 2 times.
the time period of a pendulum is proportional to the square root of length.if the length of the pendulum is increased the time period of the pendulum also gets increased. we know the formula for the time period , from there we can prove that the time period of a pendulum is directly proportional to the effective length of the pendulum. T=2 pi (l\g)^1\2 or, T isproportionalto (l/g)^1/2 or, T is proportional to square root of the effective length.
A longer pendulum has a longer period.
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.
Increase the length of the pendulum
The length of the pendulum and the gravitational pull.
The time period of a pendulum is directly proportional to the square root of its length. If the length of the pendulum is increased, the time period will also increase. Conversely, if the length is decreased, the time period will decrease.
If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.
the time period of a pendulum is proportional to the square root of length.if the length of the pendulum is increased the time period of the pendulum also gets increased. we know the formula for the time period , from there we can prove that the time period of a pendulum is directly proportional to the effective length of the pendulum. T=2 pi (l\g)^1\2 or, T isproportionalto (l/g)^1/2 or, T is proportional to square root of the effective length.
If both the length and mass of a simple pendulum are increased, the frequency of the pendulum will decrease. This is because the period of a pendulum is directly proportional to the square root of the length and inversely proportional to the square root of the mass. Therefore, increasing both the length and mass will result in a longer period and therefore a lower frequency.
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
If both the mass and length of the pendulum are increased, the period of the pendulum (time taken to complete one full swing) will increase. This is because the period of a pendulum is directly proportional to the square root of the length and inversely proportional to the square root of the acceleration due to gravity times the mass.
The period length of a pendulum increases when its amplitude is increased because the restoring force acting on the pendulum bob is no longer directly proportional to the displacement angle at larger amplitudes. This breaks the simple harmonic motion behavior of a pendulum, leading to a longer period.
An example of a hypothesis for a pendulum experiment could be: "If the length of the pendulum is increased, then the period of its swing will also increase." This hypothesis suggests a cause-and-effect relationship between the length of the pendulum and its swinging motion.
The period of a pendulum is not affected by changes in its mass as long as the length and gravitational acceleration remain constant. Therefore, doubling the mass of a pendulum will not change its period.
The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.
A longer pendulum has a longer period.
pendulum length (L)=1.8081061073513foot pendulum length (L)=0.55111074152067meter