answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: How many zero can a polynomial of degree 5 have?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the degree of the polynomial in the expression x5 plus 1 - 3x4 plus 3x9 - 2x?

The x^5 at the beginning makes the degree of the polynomial 5.


Example of third-degree polynomial?

pretty sure a third degree polynomial is just one that has a term to the power of 3 eg. x3 + 4x2 + 3x + 5


What is meant by the degree of a monomial and polynomial?

The degree is the highest power of the variable that appears in it.(x2 + x + 9) is a second degree polynomial(Q4 - 72) is a fourth degree polynomial( z ) is a first degree monomialSo the degree of a polynomial in one variable is the highest power of the variable.For example, [ 2x3 - 7x ] has degree 3.The degree of a polynomial in two or more variables is the greatest sum of theexponents in any single term.For example, [ 5m3 + m2n - mn2 ] has degree 4.And a degree of a monomial is the sum of the exponents of its variables.For example, [ 4a2b3 ] has degree 5.


How do you determine the degrees of a given polynomial?

The degree of a polynomial is the highest power that appears in the polynomial. For more than one variable, you must add the powers for each variable, for example, a3b2 is of degree 3 + 2 = 5.


Why do you get 2 solutions in the quadratic equation?

This is due to the zero-product property. In principle, any polynomial equation of degree 2 can be factored as: (x - a)(x - b) = 0 Here is a specific example: (x - 5)(x + 3) = 0 Now, if the product of two factors is zero, it follows that one of the two factors is equal to zero; so the above becomes: x - 5 = 0 OR x + 3 = 0 Solving the individual parts, you get the two solutions. Of course, it is possible that the two factors happen to be the same; in this case, the polynomial is said to have a "double" root (i.e., a double solution). Similarly, a polynomial equation of degree 3 can be separated into 3 factors, a polynomial of degree 4 can be factored into 4 factors, etc.