To calculate the vertical drop over a horizontal distance of 1 meter for an angle of 1.5 degrees, you can use the tangent function. The drop can be found using the formula: drop = distance × tan(angle). For 1 meter at 1.5 degrees, the drop is approximately 0.026 meters, or 2.6 centimeters.
To calculate the fall (or rise) for an 11-degree roof over 1 meter, you can use the tangent of the angle. The fall can be calculated as: fall = 1 meter * tan(11 degrees). This gives approximately 0.193 meters, or 19.3 centimeters of fall over 1 meter of horizontal distance.
A fall of 4 degrees over 1 meter refers to a slope or incline where the vertical drop is 4 degrees relative to the horizontal. To calculate the vertical drop, you can use the tangent function: the vertical drop is approximately 0.07 meters (or 7 centimeters) over 1 meter of horizontal distance. This represents a gentle slope, as 4 degrees is a small angle.
For a 2-degree slope, the vertical fall over a distance of 1 meter can be calculated using the tangent of the angle. The fall is approximately equal to the sine of the angle in radians, which for 2 degrees is about 0.0349. Thus, the vertical fall over 1 meter would be approximately 0.0349 meters, or about 3.49 centimeters.
To calculate the fall (or slope) of a 3-degree roof over a distance of 2 meters, you can use the formula: fall = distance × tan(angle). In this case, the fall would be approximately 2 meters × tan(3 degrees), which equals about 0.105 meters, or 10.5 centimeters. Thus, the roof would fall approximately 10.5 cm over the 2-meter span.
A fall of 3 degrees over a distance of 1 meter corresponds to a vertical drop of approximately 0.0524 meters, or 52.4 millimeters. This can be calculated using the formula: drop = distance × tan(angle), where the angle is in radians. Converting 3 degrees to radians (approximately 0.05236 radians) and applying the formula gives the drop.
To calculate the fall (or rise) for an 11-degree roof over 1 meter, you can use the tangent of the angle. The fall can be calculated as: fall = 1 meter * tan(11 degrees). This gives approximately 0.193 meters, or 19.3 centimeters of fall over 1 meter of horizontal distance.
A fall of 4 degrees over 1 meter refers to a slope or incline where the vertical drop is 4 degrees relative to the horizontal. To calculate the vertical drop, you can use the tangent function: the vertical drop is approximately 0.07 meters (or 7 centimeters) over 1 meter of horizontal distance. This represents a gentle slope, as 4 degrees is a small angle.
For a 2-degree slope, the vertical fall over a distance of 1 meter can be calculated using the tangent of the angle. The fall is approximately equal to the sine of the angle in radians, which for 2 degrees is about 0.0349. Thus, the vertical fall over 1 meter would be approximately 0.0349 meters, or about 3.49 centimeters.
To calculate the fall (or slope) of a 3-degree roof over a distance of 2 meters, you can use the formula: fall = distance × tan(angle). In this case, the fall would be approximately 2 meters × tan(3 degrees), which equals about 0.105 meters, or 10.5 centimeters. Thus, the roof would fall approximately 10.5 cm over the 2-meter span.
A fall of 3 degrees over a distance of 1 meter corresponds to a vertical drop of approximately 0.0524 meters, or 52.4 millimeters. This can be calculated using the formula: drop = distance × tan(angle), where the angle is in radians. Converting 3 degrees to radians (approximately 0.05236 radians) and applying the formula gives the drop.
160mm
all
Approx 0.087 metres.
30cm
To calculate the fall of a 2-degree roof over a distance of 6 meters, you can use the formula: fall = distance × tan(angle). The tangent of 2 degrees is approximately 0.0349. Therefore, the fall over 6 meters would be 6 × 0.0349, which is about 0.2094 meters, or approximately 21 centimeters.
Approx 0.087 metres.
Approx 0.087 metres.