160mm
A temperature gradient of 10 degrees per metre.
Fall = 1 metre*arctan(25 deg) = 1 metre*0.466 = 0.466 m or 46.6 cm approx
To calculate the vertical fall over a horizontal distance at a given angle, you can use trigonometry. In this case, the fall at 2 degrees over 6 meters can be calculated using the formula: vertical fall = horizontal distance * tan(angle). Plugging in the values, the vertical fall would be approximately 0.21 meters, or 21 centimeters.
To find the slope or fall of a ball or other object that is at an angle of 2 degrees for over 3.9 minutes, you will need several factors. You will need the distance or length of the slope and the speed of the ball at its peak movement.
30cm
A fall of 4 degrees over 1 meter refers to a slope or incline where the vertical drop is 4 degrees relative to the horizontal. To calculate the vertical drop, you can use the tangent function: the vertical drop is approximately 0.07 meters (or 7 centimeters) over 1 meter of horizontal distance. This represents a gentle slope, as 4 degrees is a small angle.
A temperature gradient of 10 degrees per metre.
Fall = 1 metre*arctan(25 deg) = 1 metre*0.466 = 0.466 m or 46.6 cm approx
all
To calculate the fall over a distance of 1.8 meters for a 5-degree angle, you can use the formula: fall = distance × sin(angle). In this case, fall = 1.8 meters × sin(5 degrees) ≈ 1.8 × 0.0872 ≈ 0.157 meters, or about 15.7 centimeters.
To calculate the vertical fall over a horizontal distance at a given angle, you can use trigonometry. In this case, the fall at 2 degrees over 6 meters can be calculated using the formula: vertical fall = horizontal distance * tan(angle). Plugging in the values, the vertical fall would be approximately 0.21 meters, or 21 centimeters.
To calculate the fall over a distance of 10 meters at a 2-degree slope, you can use the formula for vertical drop: fall = distance × sin(angle). Substituting the values, you get a fall of approximately 0.35 meters (or 35 centimeters) over 10 meters.
1.5 degrees over 1.4 meters refers to an inclination or slope. It indicates that for every 1.4 meters horizontally, there is a rise or fall of 1.5 degrees. This can be used in various contexts, such as construction or engineering, to describe the steepness of a surface or ramp. To convert this angle into a slope ratio, you could use trigonometric functions, but the angle itself provides a direct measure of the incline.
To calculate the fall (or rise) for an 11-degree roof over 1 meter, you can use the tangent of the angle. The fall can be calculated as: fall = 1 meter * tan(11 degrees). This gives approximately 0.193 meters, or 19.3 centimeters of fall over 1 meter of horizontal distance.
To calculate the fall of a 2-degree roof over a distance of 6 meters, you can use the formula: fall = distance × tan(angle). The tangent of 2 degrees is approximately 0.0349. Therefore, the fall over 6 meters would be 6 × 0.0349, which is about 0.2094 meters, or approximately 21 centimeters.
To determine the fall (or slope) of a 2-degree roof over a 4-meter span, you can use the formula for rise: rise = distance × tan(angle). For a 2-degree angle, the rise is approximately 0.07 meters (or 7 centimeters) over 4 meters. Therefore, the fall over a 4-meter length at a 2-degree slope is about 7 centimeters.
Three times the answer to the related question below.