The half-life of a radioactive substance is the time that it takes for half of the atoms to decay. With a half-life of 10 days, half has decayed in this time. After 20 days, a further 10 days/another half life, a further half of the remainder has decayed, so 1/4 of the original material remains, 1/4 of 15g is 3.75 grams. This is the amount of original radioactive substance remaining, but it’s daughter isotope ( what the decay has produced ) is also present, so the original sample mass is effectively constant, especially in a sealed container. Even in an unsealed container, and assuming alpha ( helium nucleii) emission, a drop in mass per radioactive atom of 4 Atomic Mass units, compared with the original atom of, say 200 amu is only 2% mass decrease, less for heavier decaying nucleii.
Chat with our AI personalities
A half life may or may not be a fraction. The half life of carbon 14, for example, is 5715 years - not really a fraction, unless you are thinking in terms time periods which are much longer than a year.
we need to know the units of 20. Is it grams, kilograms, %...
The half-life of a radioactive nuclide when 95% of it is left after one year is 13.5 years. AT = A0 2(-T/H) 0.95 = (1) 2(-1/H) ln2(0.95) = -1/H H = -1/ln2(0.95) H = 13.5
Luckily got it on my last try it was apparently 65.39%
2 half hours would be 1 hour