the use of the pearson's of skewness
if coefficient of skewness is zero then distribution is symmetric or zero skewed.
distinguish between dispersion and skewness
If the skewness is different, then the data sets are different.Incidentally, there is one [largely obsolete] definition of skewness which is in terms of the mean and median. Under that definition, it would be impossible for two data sets to have equal means and equal medians but opposite skewness.
Skewness is measured as the third standardised moment of the random variable. Skewness is the expected value of {[X - E(X)]/sd(X)}3 where sd(X) = sqrt(Variance of X)
There is no single number. There are several different measures of central tendency - different ones are better in different circumstances. Then there are several measures of spread or dispersion, skewness and so on. All of these are characteristics of the data and they cannot all be summarised by a single number.
the use of the pearson's of skewness
if coefficient of skewness is zero then distribution is symmetric or zero skewed.
distinguish between dispersion and skewness
No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.
If the skewness is different, then the data sets are different.Incidentally, there is one [largely obsolete] definition of skewness which is in terms of the mean and median. Under that definition, it would be impossible for two data sets to have equal means and equal medians but opposite skewness.
skewness=(mean-mode)/standard deviation
describe the properties of the standard deviation.
When the data are skewed to the right the measure of skewness will be positive.
Answer this question...similarities and differences between normal curve and skewness
Sets of data have many characteristics. The central location (mean, median) is one measure. But you can have different data sets with the same mean. So a measure of dispersion is used to determine whether there is a little or a lot of variability within the set. Sometimes it is necessary to look at higher order measures like the skewness, kurtosis.
Skewness is measured as the third standardised moment of the random variable. Skewness is the expected value of {[X - E(X)]/sd(X)}3 where sd(X) = sqrt(Variance of X)