That's an extraneous solution. You need to check for these when algebraically solving equations, especially when you take both sides of an equation to a power.
An integer is not an equation, but rather a counting number.
Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.
You cannot. x - 54 is an expression not an equation. An expression has no solution set since there is nothing to solve.
-10
17 is not an equation and so there can be no "solution of 17". There is, therefore, no possible answer to the question.
plug your solution back into the original equation and work it out again
how can the reflexive property be applied to check the accuracy of a solution to equation?
By substitution.
Solution. A solution of an equation is a number that satisfy the equation. This means that if you replace this number on the equation and check it, the equation will be true. When you solve an equation you can find some roots, but not all of them satisfy the equation. Thus always check your answers after resolving your equation, and eliminate as solution the answers that don't make the equation true or undefined.
That's an extraneous solution. You need to check for these when algebraically solving equations, especially when you take both sides of an equation to a power.
If you found the value of x that is a solution to an equation, you want to substitute that value back into the original equation, to check that it indeed satisfies the equation. If it does not satisfy the equation, then you made an error in your calculations, and you need to rework the problem.
An integer is not an equation, but rather a counting number.
Substitute that value in the equation, and then check to see if the resulting statement is TRUE.
That simply means that there is no integer solution to:24n = 12 For comparison, 4 IS a factor; so the equation: 4n = 12 DOES have an integer solution.
Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.
You cannot. x - 54 is an expression not an equation. An expression has no solution set since there is nothing to solve.