answersLogoWhite

0

The equation ( x = 14 ) identifies a single integer solution, which is ( x = 14 ) itself. Since the equation specifies that ( x ) is equal to 14, there are no other integer solutions. Therefore, the only integer solution is ( {14} ).

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Related Questions

What lists all the integer solutions of the equation x equals 10?

The person or program that solves the equation does.


Which lists all the integer solutions of the inequality x 3?

The inequality ( x < 3 ) includes all integer solutions that are less than 3. Therefore, the integer solutions are ( \ldots, -2, -1, 0, 1, 2 ). In interval notation, this can be expressed as ( (-\infty, 3) ) for the integers.


Lsquare plus msquare plus nsquare equals 1?

This equation describes all the points on the unit sphere. There is an infinite number of solutions. Some quick integer solutions would be (1,0,0) and (0,1,0) and (0,0,1) which are the one the axes.


What identifies all the integer solutions of the equation x 12?

It seems like there is a typo or missing information in your question regarding the equation "x 12." If you meant to ask about the equation (x = 12), then the only integer solution is (x = 12). If you meant a different equation, please clarify so I can provide the correct answer.


What are all the solutions to sine theta - 1 in terms of pie?

The solutions are (4n - 1)*pi/2 for all integer values of n.


How do you find the general solutions of csc x equals -2?

Cosec x = -2 => sin x = -0.5 The primary solution is x = -pi/6 radians. Therefore the solutions are: 2n*pi - pi/6 and (2n+1)*pi + pi/6 for all integer n.


Which lists all the integer solutions of the inequality of 3?

The question cannot be answered since it contains no inequality.


How do you find the integer solution of the inequality x 2?

To find the integer solutions of the inequality ( x^2 < n ) (where ( n ) is a positive integer), first determine the square root of ( n ). The integer solutions for ( x ) will be all integers satisfying ( -\sqrt{n} < x < \sqrt{n} ). This means you consider all integers from ( -\lfloor \sqrt{n} \rfloor ) to ( \lfloor \sqrt{n} \rfloor ), excluding the endpoints if ( n ) is a perfect square.


What does the solutions represent in graph?

Solutions may be closed or open regions or they may be points within a region (for example, grid points for integer solutions), or points of intersection between curves or between curves and the axes. It all depends on what the graphs and the solutions are.


How many solutions does x plus y equals 4 and 2x plus 2y equals 8 have?

Infinite, both equations are equivalent and all possible solutions can be represented on the graph y = 4 - x


Can the denominator of a rational number be used as any integer?

No. 3/(1/7) is a rational number. However, (1/7) cannot be used as an integer. Incidentally, the number equals 21.


Are all multiples of 8 also multiples of 4?

Yes. By definition a multiple of 8 is any number that can be expressed as 8*n, where n is an integer. But 8n=4*(2*n), and 2*n is an integer, when n is an integer. Because 8n equals four times an integer, 8n is a multiple of 4.