Since the question did not specify a rational polynomial, the answer is a polynomial of degree 3.
7X^3 Third degree polynomial.
No. A polynomial can have as many degrees as you like.
The degree of a polynomial is merely the value of the highest power in the polynomial. In this case, the degree is 6 because of 4x6.
The degree is the highest power of the variable that appears in it.(x2 + x + 9) is a second degree polynomial(Q4 - 72) is a fourth degree polynomial( z ) is a first degree monomialSo the degree of a polynomial in one variable is the highest power of the variable.For example, [ 2x3 - 7x ] has degree 3.The degree of a polynomial in two or more variables is the greatest sum of theexponents in any single term.For example, [ 5m3 + m2n - mn2 ] has degree 4.And a degree of a monomial is the sum of the exponents of its variables.For example, [ 4a2b3 ] has degree 5.
No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).
For example, if you divide a polynomial of degree 2 by a polynomial of degree 1, you'll get a result of degree 1. Similarly, you can divide a polynomial of degree 4 by one of degree 2, a polynomial of degree 6 by one of degree 3, etc.
Since the question did not specify a rational polynomial, the answer is a polynomial of degree 3.
The polynomial 7x3 + 6x2 - 2 has a degree of 3, making it cubic.
7X^3 Third degree polynomial.
No. A polynomial can have as many degrees as you like.
The degree of a polynomial refers to the largest exponent in the function for that polynomial. A degree 3 polynomial will have 3 as the largest exponent, but may also have smaller exponents. Both x^3 and x^3-x²+x-1 are degree three polynomials since the largest exponent is 4. The polynomial x^4+x^3 would not be degree three however because even though there is an exponent of 3, there is a higher exponent also present (in this case, 4).
The smallest is 0: the polynomial p(x) = 3, for example.
The polynomial P(x)=(x-3)(x-0)(x+3)(x-1) is of the fourth degree.
That means that you divide one polynomial by another polynomial. Basically, if you have polynomials "A" and "B", you look for a polynomial "C" and a remainder "R", such that: B x C + R = A ... such that the remainder has a lower degree than polynomial "B", the polynomial by which you are dividing. For example, if you divide by a polynomial of degree 3, the remainder must be of degree 2 or less.
The degree of a polynomial is the sum of all of the variable exponents. For example 6x^2 + 3x + 2 has a degree of 3 (2 + 1).
The degree for 6xy to the 3rd power is equal to the addition of the exponents of equal polynomial that means 1+3 (1 for the x and 3 for the y) and you get an answer of a 4th degree polynomial