v = n1 + n2 - k
n1 = 36, n2= 40 and k=2
v = 36 + 40 - 2
v = 74
Yes. The parameters of the t distribution are mean, variance and the degree of freedom. The degree of freedom is equal to n-1, where n is the sample size. As a rule of thumb, above a sample size of 100, the degrees of freedom will be insignificant and can be ignored, by using the normal distribution. Some textbooks state that above 30, the degrees of freedom can be ignored.
A T test is used to find the probability of a scenario given a specific average and the number of degrees of freedom. You are free to use as few degrees of freedom as you wish, but you must have at least 1 degree of freedom. The formula to find the degrees of freedom is "n-1" or the population sample size minus 1. The minus 1 is because of the fact that the first n is not a degree of freedom because it is not an independent data source from the original, as it is the original. Degrees of freedom are another way of saying, "Additional data sources after the first". A T test requires there be at least 1 degree of freedom, so there is no variability to test for.
It is not negative. it is positively skewed, and it approaches a normal distribution as the degrees of freedom increase. Its shape is NEVER based on the sample size.
A criterion-based sample is a non-probability sampling method where participants are selected based on specific characteristics or criteria relevant to the research study. This approach ensures that the sample reflects particular traits that align with the research objectives, enhancing the relevance and validity of the findings. It is commonly used in qualitative research, where the focus is on understanding a particular phenomenon or group rather than generalizing to a larger population.
The data sets determine the degrees of freedom for the F-test, nit the other way around!
v = n1 + n2 - k n1 = 36, n2= 40 and k=2 v = 36 + 40 - 2 v = 74
If the sample consisted of n observations, then the degrees of freedom is (n-1).
Degrees of freedom (df) refer to the number of independent values or quantities that can vary in a statistical analysis. In general, for a sample, the degrees of freedom can be calculated as the sample size minus one (df = n - 1) when estimating a population parameter, like the mean. For other statistical tests, such as t-tests or ANOVA, the degrees of freedom depend on the number of groups and sample sizes involved, following specific formulas outlined for each test.
Yes. The parameters of the t distribution are mean, variance and the degree of freedom. The degree of freedom is equal to n-1, where n is the sample size. As a rule of thumb, above a sample size of 100, the degrees of freedom will be insignificant and can be ignored, by using the normal distribution. Some textbooks state that above 30, the degrees of freedom can be ignored.
There are 24 df.
A T test is used to find the probability of a scenario given a specific average and the number of degrees of freedom. You are free to use as few degrees of freedom as you wish, but you must have at least 1 degree of freedom. The formula to find the degrees of freedom is "n-1" or the population sample size minus 1. The minus 1 is because of the fact that the first n is not a degree of freedom because it is not an independent data source from the original, as it is the original. Degrees of freedom are another way of saying, "Additional data sources after the first". A T test requires there be at least 1 degree of freedom, so there is no variability to test for.
It is not negative. it is positively skewed, and it approaches a normal distribution as the degrees of freedom increase. Its shape is NEVER based on the sample size.
the participants are representative of the population they are interested in studying
The number of degrees of freedom decreases, from 150, by 1 for every parameter that is estimated using the data. If the parameter is known from some other source then there is no effect on the df.
The estimated standard deviation goes down as the sample size increases. Also, the degrees of freedom increase and, as they increase, the t-distribution gets closer to the Normal distribution.
A criterion-based sample is a non-probability sampling method where participants are selected based on specific characteristics or criteria relevant to the research study. This approach ensures that the sample reflects particular traits that align with the research objectives, enhancing the relevance and validity of the findings. It is commonly used in qualitative research, where the focus is on understanding a particular phenomenon or group rather than generalizing to a larger population.
population