In this context, ( s^2 ) would refer to the sample variance of the salaries of the 66 employees taken from the population of 820 employees. It is a measure of how much the salaries of these sampled employees deviate from their average salary. This sample variance provides an estimate of the variance of the population, assuming that the sample is representative.
The sample variance is considered an unbiased estimator of the population variance because it corrects for the bias introduced by estimating the population variance from a sample. When calculating the sample variance, we use ( n-1 ) (where ( n ) is the sample size) instead of ( n ) in the denominator, which compensates for the degree of freedom lost when estimating the population mean from the sample. This adjustment ensures that the expected value of the sample variance equals the true population variance, making it an unbiased estimator.
You cannot prove it because it is not true.The expected value of the sample variance is the population variance but that is not the same as the two measures being the same.
The n-1 indicates that the calculation is being expanded from a sample of a population to the entire population. Bessel's correction(the use of n − 1 instead of n in the formula) is where n is the number of observations in a sample: it corrects the bias in the estimation of the population variance, and some (but not all) of the bias in the estimation of the population standard deviation. That is, when estimating the population variance and standard deviation from a sample when the population mean is unknown, the sample variance is a biased estimator of the population variance, and systematically underestimates it.
In statistics, "n-1" refers to the degrees of freedom used in the calculation of sample variance and sample standard deviation. When estimating variance from a sample rather than a whole population, we divide by n-1 (the sample size minus one) instead of n to account for the fact that we are using a sample to estimate a population parameter. This adjustment corrects for bias, making the sample variance an unbiased estimator of the population variance. It is known as Bessel's correction.
that you have a large variance in the population and/or your sample size is too small
66
The sample variance is considered an unbiased estimator of the population variance because it corrects for the bias introduced by estimating the population variance from a sample. When calculating the sample variance, we use ( n-1 ) (where ( n ) is the sample size) instead of ( n ) in the denominator, which compensates for the degree of freedom lost when estimating the population mean from the sample. This adjustment ensures that the expected value of the sample variance equals the true population variance, making it an unbiased estimator.
The proof that the sample variance is an unbiased estimator involves showing that, on average, the sample variance accurately estimates the true variance of the population from which the sample was drawn. This is achieved by demonstrating that the expected value of the sample variance equals the population variance, making it an unbiased estimator.
It means you can take a measure of the variance of the sample and expect that result to be consistent for the entire population, and the sample is a valid representation for/of the population and does not influence that measure of the population.
No, it is biased.
You cannot prove it because it is not true.The expected value of the sample variance is the population variance but that is not the same as the two measures being the same.
It is a biased estimator. S.R.S leads to a biased sample variance but i.i.d random sampling leads to a unbiased sample variance.
Yes, there is a mathematical proof that demonstrates the unbiasedness of the sample variance. This proof shows that the expected value of the sample variance is equal to the population variance, making it an unbiased estimator.
The n-1 indicates that the calculation is being expanded from a sample of a population to the entire population. Bessel's correction(the use of n − 1 instead of n in the formula) is where n is the number of observations in a sample: it corrects the bias in the estimation of the population variance, and some (but not all) of the bias in the estimation of the population standard deviation. That is, when estimating the population variance and standard deviation from a sample when the population mean is unknown, the sample variance is a biased estimator of the population variance, and systematically underestimates it.
In statistics, "n-1" refers to the degrees of freedom used in the calculation of sample variance and sample standard deviation. When estimating variance from a sample rather than a whole population, we divide by n-1 (the sample size minus one) instead of n to account for the fact that we are using a sample to estimate a population parameter. This adjustment corrects for bias, making the sample variance an unbiased estimator of the population variance. It is known as Bessel's correction.
The answer depends on the underlying variance (standard deviation) in the population, the size of the sample and the procedure used to select the sample.
yes, it can be smaller, equal or larger to the true value of the population varience.