Q: If line one is parrelel to line two and line one has a slope of negitave one sixth what is the slope of line two?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

It all depends on the slope, really. Because remember that the formula for calculating slope is rise over run.

The line perpendicular to a line with a slope of 1/5 has a slope of -5.

The slope of a line is undefined if the line is vertical.

The slope of a line perpendicular to one with slope m is -1/m. So for a line with slope 1/7, any line perpendicular to it will have: slope = -1 / (1/7) = -7

A vertical line has a slope of infinity.

Related questions

It all depends on the slope, really. Because remember that the formula for calculating slope is rise over run.

A line with slope of zero is horizontal. A line with no slope is vertical because slope is undefined on a vertical line.

Slope of a line = m slope of perpendicular line = -1/m

The line perpendicular to a line with a slope of 1/5 has a slope of -5.

The slope of a line and the coordinates of a point on the line.The slope of a line and the coordinates of a point on the line.The slope of a line and the coordinates of a point on the line.The slope of a line and the coordinates of a point on the line.

If the line has a slope of 2, then the perpendicular line has a slope of -1/2. The slope of a perpendicular line is the negative reciprocal. Another example would be if the slope of a line is -1/4, then the slope of the perpendicular is 4.

The lines below are perpendicular. If the slope of the green line is -1, what is the slope of the red line?

if the slope of a line is 2/3, then the slope of a parallel line would be 2/3.

Parallel lines have the same slope. The slope of the second line is also 13.

No, the slope of a horizontal line is 0. The slope of a vertical line is undefined.

For two lines to be parallel they must have the same slope. A line parallel to a line with slope -2 would have a slope of -2.

The slope of a line measures the steepness of the line.