(3ab)^(2) Explanation: Simplify (3ab)^2 Use the power rule (ab)^n = a^nb^n to distribute the exponent. Raise 3 to the power of 2. 9a^2b^2
12ab+3ab=15ab
0.3333
GCF(6a2bx, 15ab2x-24ab) = GCF[6a2bx, 3ab(5bx-8)] = 3ab
3ab
(3ab)^(2) Explanation: Simplify (3ab)^2 Use the power rule (ab)^n = a^nb^n to distribute the exponent. Raise 3 to the power of 2. 9a^2b^2
Assuming that non-leading numbers are exponents, the expression becomes12a^2b + 8a - 5a^2b + 2ab - 4ab^2 + 6ab - 2a - 3ab= 7a^2b + 6a + 5ab - 4ab^2= a*(7ab + 6 + 5b - 4b^2)
2a x 3b = 6ab
1ab
Factorizing 3ab + 3ac gives 3a (b + c).Factorizing is to express a number or expression as a product of factors.When factorizing always look for common factors. To factorize (3ab + 3ac) look for the highest factor between the two terms (3a). 3ab + 3ac = 3a (b + c)
2a-3ab = -1
3a2b is the simplest formImproved Answer:-3a x 2b = 6ab when simplified
5a2 + 6ab=a(5a+6b)
6ab-3b factorize = 3
3ab x 2c = 6abc
12ab+3ab=15ab
To simplify the expression 6a^2 - 6ab + 7a^2, first combine like terms. Combine the terms with the same variable (a) raised to the same power. This results in 13a^2 - 6ab as the simplified expression. Remember to keep the terms in standard form with the variable term first, followed by any constant terms.