RNA primers are used to initiate the DNA replication at the template strand. DNA molecules require a free 3' OH, to which it could add the nucleotides. This free 3' OH is provided by the RNA primer. So prior to the synthesis of DNA a short fragment of RNA is synthesized that is later excised and filled with DNA molecules.
8
5 - 3 and 3/5 = 1 and 2/5
1/3 of 5 add 5 = 1/3*5 + 5 = 5/3 + 5 = 12/3 + 5 = 62/3 or 20/3
√-3 - √5 = i√3 - √5 = -√5 + i√3
DNA is synthesized in a 5' to 3' direction.
DNA strands are synthesized in the 5' to 3' direction because the enzyme responsible for building the new DNA strand, DNA polymerase, can only add new nucleotides to the 3' end of the growing strand. This results in the DNA strand being synthesized in a specific direction.
The 3' 5' DNA structure is important in DNA replication because it determines the direction in which new DNA strands are synthesized. The leading strand is synthesized continuously in the 5' to 3' direction, while the lagging strand is synthesized in short fragments in the opposite direction. This structure ensures accurate replication of the genetic material.
DNA is synthesized in the 5' to 3' direction because the enzymes responsible for DNA replication can only add new nucleotides to the 3' end of the growing DNA strand. This results in the formation of a new DNA strand that is complementary to the original template strand.
DNA is synthesized in the 5' to 3' direction through a process called DNA replication. This process involves the enzyme DNA polymerase adding new nucleotides to the growing DNA strand in a specific direction, starting from the 5' end and moving towards the 3' end. This ensures that the DNA molecule is built in the correct orientation.
DNA can only be synthesized in the 5' to 3' direction because the enzyme responsible for DNA replication, DNA polymerase, can only add new nucleotides to the 3' end of the growing DNA strand. This results in the formation of a new DNA strand that is complementary to the original template strand.
The 3' and 5' ends in DNA replication and transcription processes are significant because they determine the direction in which DNA is synthesized. In DNA replication, the new strand is synthesized in the 5' to 3' direction, while in transcription, the RNA molecule is synthesized in the 5' to 3' direction based on the template DNA strand. This directional synthesis is crucial for maintaining the genetic information and ensuring accurate replication and transcription processes.
The 5' and 3' ends of a nucleotide are important in DNA replication and transcription because they determine the direction in which the DNA strand is read and synthesized. During replication, the new DNA strand is synthesized in the 5' to 3' direction, while during transcription, the RNA molecule is synthesized in the 5' to 3' direction based on the template DNA strand. This directional specificity ensures accurate copying and expression of genetic information.
During cellular processes, DNA is synthesized in the 5' to 3' direction by DNA polymerase enzyme. This enzyme adds nucleotides to the growing DNA strand in a specific order, following the template of the existing DNA strand. The 5' to 3' direction refers to the orientation of the sugar-phosphate backbone of the DNA molecule, with new nucleotides being added to the 3' end of the growing strand.
DNA synthesis occurs in the 5' to 3' direction because the enzyme responsible for building new DNA strands, DNA polymerase, can only add nucleotides to the 3' end of the growing strand. This results in the DNA strand being synthesized in the 5' to 3' direction.
During DNA replication, the new strand is synthesized in the 5' to 3' direction. The original DNA strand is read in the 3' to 5' direction, and the new strand is built by adding nucleotides in the 5' to 3' direction. This process is carried out by enzymes called DNA polymerases.
During DNA replication, new DNA strands are synthesized in the 5' to 3' direction. This means that nucleotides are added to the growing strand starting at the 3' end and moving towards the 5' end.