answersLogoWhite

0

R is drawn first because it's fast acting

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
BeauBeau
You're doing better than you think!
Chat with Beau
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra

Add your answer:

Earn +20 pts
Q: Is Novolin R or Novolin N drawn first?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What are the names of regular insulin?

There are several different names for regular insulin, depending on the maker. The one constant is that all of them contain the letter "R" for "regular," in their name. For instance, one maker of insulin called all their insulins Novolin. The "regular" insulin is "Novolin R," their NPH is called "Novolin N," etc.


What is the formula for a geometric sequence?

a+a*r+a*r^2+...+a*r^n a = first number r = ratio n = "number of terms"-1


What is the difference between a permutation and combination?

n p =n!/(n-r)! r and n c =n!/r!(n-r)! r


Why is it said that poisson distribution is a limiting case of binomial distribution?

This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.


What does an equal in geometric series?

Geometric series may be defined in terms of the common ratio, r, and either the zeroth term, a(0), or the first term, a(1).Accordingly,a(n) = a(0) * r^n ora(n) = a(1) * r^(n-1)