R is drawn first because it's fast acting
Chat with our AI personalities
There are several different names for regular insulin, depending on the maker. The one constant is that all of them contain the letter "R" for "regular," in their name. For instance, one maker of insulin called all their insulins Novolin. The "regular" insulin is "Novolin R," their NPH is called "Novolin N," etc.
a+a*r+a*r^2+...+a*r^n a = first number r = ratio n = "number of terms"-1
n p =n!/(n-r)! r and n c =n!/r!(n-r)! r
This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.
Geometric series may be defined in terms of the common ratio, r, and either the zeroth term, a(0), or the first term, a(1).Accordingly,a(n) = a(0) * r^n ora(n) = a(1) * r^(n-1)