a+a*r+a*r^2+...+a*r^n
a = first number
r = ratio
n = "number of terms"-1
what is the recursive formula for this geometric sequence?
un = u0*rn for n = 1,2,3, ... where r is the constant multiple.
Yes, the explicit rule for a geometric sequence can be defined from a recursive formula. If the first term is 23 and the common ratio is ( r ), the explicit formula can be expressed as ( a_n = 23 \cdot r^{(n-1)} ), where ( a_n ) is the nth term of the sequence. This formula allows you to calculate any term in the sequence directly without referencing the previous term.
Yes, that's what a geometric sequence is about.
To represent a geometric sequence recursively, you can use the formula ( a_n = r \cdot a_{n-1} ), where ( r ) is the common ratio and ( a_1 ) is the first term of the sequence. The first term can be defined explicitly, such as ( a_1 = A ), where ( A ) is a constant. This recursive definition effectively captures the relationship between consecutive terms in the sequence.
what is the recursive formula for this geometric sequence?
un = u0*rn for n = 1,2,3, ... where r is the constant multiple.
4, -1236, -108 is not a geometric system.
No.
Yes, the explicit rule for a geometric sequence can be defined from a recursive formula. If the first term is 23 and the common ratio is ( r ), the explicit formula can be expressed as ( a_n = 23 \cdot r^{(n-1)} ), where ( a_n ) is the nth term of the sequence. This formula allows you to calculate any term in the sequence directly without referencing the previous term.
Yes, that's what a geometric sequence is about.
To represent a geometric sequence recursively, you can use the formula ( a_n = r \cdot a_{n-1} ), where ( r ) is the common ratio and ( a_1 ) is the first term of the sequence. The first term can be defined explicitly, such as ( a_1 = A ), where ( A ) is a constant. This recursive definition effectively captures the relationship between consecutive terms in the sequence.
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).
a sequence of shifted geometric numbers
In order to answer the question is is necessary to know what the explicit formula was. But, since you have not bothered to provide that information, the answer is .
Yes, it can both arithmetic and geometric.The formula for an arithmetic sequence is: a(n)=a(1)+d(n-1)The formula for a geometric sequence is: a(n)=a(1)*r^(n-1)Now, when d is zero and r is one, a sequence is both geometric and arithmetic. This is because it becomes a(n)=a(1)1 =a(1). Note that a(n) is often written anIt can easily observed that this makes the sequence a constant.Example:a(1)=a(2)=(i) for i= 3,4,5...if a(1)=3 then for a geometric sequence a(n)=3+0(n-1)=3,3,3,3,3,3,3and the geometric sequence a(n)=3r0 =3 also so the sequence is 3,3,3,3...In fact, we could do this for any constant sequence such as 1,1,1,1,1,1,1...or e,e,e,e,e,e,e,e...In general, let k be a constant, the sequence an =a1 (r)1 (n-1)(0) with a1 =kis the constant sequence k, k, k,... and is both geometric and arithmetic.